
Chapte r 7

Memory and Programmable Logic

7 .1 INTRODUCTION

A memory unit is a device to which binary information is transferred for storage and from
which information is retrieved when needed for processing. When data processing takes place .
information from memory is transferred to se lected registers in the processing unit. Interme­
dia te and fina l results obta ined in theprocessing unit are trans ferred back to bestored in mem­
ory . Binary information recei ved from an input device is stored in memory. and information
transferred to an ou tput device is tak en from memory. A memory unit is a collecti on of cells
capable of s.toring a large quantity of binary information.

There are two types of memories that are used in digital systems: random-access memory
(RA\f l and rrad-anly memory (RO~). RA\t: stores new information for laterU~. The Pl'OC\."'iS
of storing new information intomemory is referredto as a memory write operation. Theproce..s
o f transferri ng the stored infonnation out of memo ry is refe rred to as a memory " ad opera­
tion . RA~ can perform both write and read operations. RO~ can perfonn onl y the read op­
eration. Th is means that suitable binary information is already stored inside memory and can
be retrieved or rea d at any time. However, that information cannot be altered by writing .

ROM is a programmable logic device (PLO). Thebinary information that is stored within such
a device is specified in some fashio n and then embedded within the hard ware in a process is
refe rred to esprogrumming the device. The word "prog ramming" here refers to a hardw are pro­
cedure which specifi cs the bits that are inserted into the hardw are configuration of the dev ice.

ROM is one example o f a PLO. Other such units are the programmable logi c array (PLA).
programmable array logic (PAL), and the field -programmable gate array (FPGA). A PLO is an
integra ted circuit with intcmallogic gates connected through electronic paths that behave sim­
ilarly to fuse s. In the original state o f the device. all the fuses are intact. Programming the
device Invol ves blo wing those fuses along the paths that must be removed in order to obtain

284

(a) Conventional symbol

Section 7.2 Random-Access Memory 285

(b) Array logicsymbol

FIGURE. 7 .1
Conventional and array logic diagrams for OR gate

the particular contiguration of the desired logic function . In this chapter, we introduce the con­
figuration of PLOs and indicate procedures for their use in the design of digital systems . We
also present CMOS FPGAs, which are configured by downloading a stream of bits into the de­
vice to configure transmission gates to establish the internal connectivity required by a speci ­
fied logic function (combinational or sequential).

A typical Pill may have hundreds to millions of gates interconnected through hundreds to thou­
sands of internal paths. In order to show the internallogic diagram of such a device in a concise
form, it is necessary to employ a special gate symbology applicable to array logic. Figure 7.1 shows
the conventional and array logic symbols for a multiple-input OR gate. Instead of having multi­
ple input lines into the gate. we draw a single line entering the gate.The input lines are drawn per­
pendicular to this single line and are connected to the gate through internal fuses. In a similar
fashion, we can draw the array logic for an AND gate. This type of graphical representation for
the inputs of gates will be used throughout the chapter in array logic diagrams.

7 .2 RANDOM -ACCESS MEMORY

A memory unit is a collection of storage cells. together with associated circuits needed to trans­
fer information into and out of a device. The architecture of memory is such that information
can be selectively retrieved from any of its intemallccations. The time it takes to transfer in­
formation to or from any desired random location is always the same-hence the name random­
access memory, abbreviated RAM. In contrast, the time required to retrieve information that
is stored on magnetic tape depends on the locat ion of the data.

A memory unit stores binary information in groups of bits called WOrt/so A word in memo­
ry is an entity of bits that move in and out of storage as a unit. A memory word is a group of
I 's and D's and may represent a number, an instruct ion , one or more alphanumeric characters.
or any other binary-coded infonnation. Agroup of 8 bits is called a byte. Most computer mem­
ories use words that are multiples of 8 bits in length. Thus. a l6·bit word contains two bytes.
and a 32-bit word is made up of four bytes. The capacity of a memory unit is usually stated as
the total number of bytes that the unit can store.

Communication between memory and its environment is achieved through data input and
output lines, address selection lines, and control lines that specify the direct ion of transfer. A
block diagram of a memory unit is shown in Fig. 7.2. The n data input lines provide the infor­
mation to be stored in memory. and the n data output lines supply the information coming out
of memory. The k address lines specify the particular word chosen among the many available.
The two control inputs specify the direction of transfe r desired : The Write input causes bina­
ry data to be transferred into the memory. and the Read input causes binary data to be trans­
ferred out of memory.

286 Chapter 7 Memory and Programmable logic

l: addre uees --+

"'rile

IIdala input~

IIdala output lines

fiGURE 7.2
Block diagram of a me mory unit

Th e memor y unit is specified by the number of words it contains and the number of bits
in each word. The address lines select one particular word . Each word in memor} i ~ assigned
an ide ntification number. called an add ress. starting fro m 0 up 10 24 - I. where k is the
number of address lin es. The selection of a speci fic wor d inside memory is done by apply­
ing the k· bi t address to the address lines. An internal decod er accepts this addre ss and opcm
the paths needed to select the word spec ified. Memori es vary great ly in size and may range
from 1.024 wo rds. requiring an add ress of 10 bits. to 232words. req uiring 32 address bits. It
is customary to refe r to the num ber of words (or bytes) in memory with one of the lcuers K
(kilo). ~1 (mega). and G (g iga). K is equal to 210• 1'.1 is equal to 210• and G is equal to 2:10.
Thus. (HK "" 2 16. 2~1 = 21J. and 4G = 232.

Con sider. for example. a memory unit with a capacity of IK words of 16 bits each. Since
IK "" 1.02-t = 210 and 16bits constitute two byt es. we can say that the me[Jl()f) can accom­
modate 2.()..t8 = 2K bytes . Figure 1.3 shows possible contents of the first three and the lao,{

Memory add ress

Binary Decimal !-temol)' coe teet

o

000000<XXl1

(lXXXlXlOIO 2

1111111101 l02t

1111111110 1022

1111III III 1023

flc;, URE 7.3
Contents of. 102-4 x 16 memory

11011010101011101!
tOI01OIli00l IOOI

ICXKXl IIOIOlOOOIIOI
Ii

~.

···-.,
10011lOHl 1OIOl OO

10000110100011110 !

neunooncoun

Section 7.2 Random-Access Memory 287

three words of this memory. Each word contains 16 bits that can be divided into two bytes. The
words are recognized by their decimal address from 0 to 1,023. The equivalent binary address
consists of 10 bits. The first address is specified with ten O's: the last address is specified with
ten ls. because 1.023 in binary is equal to 1111111 111.A word in memory is selected by its bi­
nary address. When a word is read or written, the memory operates on all 16 bits as a single unit.

The IK X 16 memory of Fig. 7.3 has 10 bits in the address and 16 bits in each word. As
another example. a 64K X 10 memo ry will have 16 bits in the address (since 64K = 216)

and eac h word will consist of 10 bits. The number of address bits needed in a memory is de­
pendent on the total number of words that can be stored in the memory and is independent of
the number of bits in each word. The number of bits in the address is determined from the re­
lationship 2* e m. where m is the total number of words and k is the number of address bits
needed to satisfy the relationship.

Write and Read Operations

The two operations that RAM can perform are the write and read operation s. As alluded to
earlier. the write signal specifies a transfe r-in operation and the read signal specifies a transfer­
out operation. On accepting one of these control signals. the internal circuits inside the mem­
ory provide the desired operation.

The steps that must be taken for the purpose of transferring a new word to be stored into
memory are as follows:

l. Apply the binary address of the desired word to the address lines.

2. Apply the data bits that must be stored in memo ry to the data input lines.

3. Activate the write input.

The memory unit will then take the bits from the input data lines and store them in the word
specified by the address lines.

The steps that must be taken for the purpose of transferri ng a stored word out of memory
are as follows:

1. Apply the binary address of the desired word to the address lines.

2. Activate the read input.

The memory unit will then take the bits from the word that has been selected by the address
and apply them to the output data lines. The contents of the selected word do not change after
the read operation. i.e.. the word operation is nondestructive.

Commercial memory components available in integrated-circuit chips sometimes provide
the two control inputs for read ing and writing in a somewhat different configuration. Instead
of having separate read and write inputs to control the two operations. most integrated circuits
provide two other control inputs: One input selects the unit and the other determi nes the oper­
ation. The memory operations that result from these control inputs are specified in Table 7.1.

The memory enable (sometimes called the chip select) is used to enable the particular mem­
ory chip in a multichip implementation of a large memo ry. When the memory enable is inac­
tive. the memory chip is not selected and no operation is performed. When the memory enable
input is active. the read/write input determines the operation to be performed.

288 Chapter 7 Memory and Programmable l ogic

Tabl e 7.1
Control Inputs to Memory Chip

Memory (nable Read/Write Memory Operation

o
1
1

x
o
1

None
Write to selected word
Read from selected word

Me mory Description In HDL

Memory is modeled in the Verilog HDL by an arra y of registers . It is decl ared with a reg key­
word . using a two-dimensional arra y. The firs t number in the array spec ifies the number of
bits in a word (the word length) and the seco nd gives the number of words in memory (rnem­
ory depth) . For example, a me mory of 1.024 words with 16 bits per word is declared as

reg[15: 0] memword to: 1023];

Thi s statement descri bes a two-dimensional arra y of 1.024 reg isters. each containing 16 bus.
The second array range in the declaration ofmemword specifies the total number of wo rds in
memory and is equivalent to the address of the memory. For example. memword[512] refers
10 the lfi-bit memory word at addre ss 5 12.

The operation of a memory unit is illu strated in HDL Example 7.1. The memory has 64
words of four bi ts each. There are two control inputs : Enable and ReadWrite. The Dataln and
DataOut lines have four bits each . The input Address mu st have six bits (since 26 = 64). The
memory is dec lared as a two-dimensional array of reg isters , with Mem used as an identifier that
can be refe renced with an index to access any of the 64 words. A memory operation requires
that the Enable input be active . T he ReadWrite input de termi nes the type of ope ration. If
ReadWrite is I . the memory performs a read operation symbolized by the statement

DalaOut +- Mem [Address);

Execution of this statement causes a tran sfer of four bits from the selected memory word spec­
ified by Address onto the Da1aOut lines. If ReadWri1e is O. the memory performs a write op­
eration symbolized by the statem ent

Mem (Address) +- Oa ta ln;

Execution of this statement causes a transfer from the four-bit Dataln lines into thememory word
selectedby Address.When Enable is equalto 0, the memory is disabled and the outputs areassumed
to be in a high-impedance stale, indicated by the symbol z.Thus. the memoryhas three-stare outputs.

HDL Exa m ple 7.1

1/Read and write operations of memory
II Memory size is 64 words of four bits each.

modu le memory (Enable. ReadWrite, Address, Dataln, DataOut);
in put Enable, ReadWrite;
Input [3: OJ Dataln;

Section 7 .2 Random-"cce~~ Memory 289

Input (5: 01 Address;
output 13: 01 DataOut;
reg {3: OJ DataOut;
reg (3: OJ Mem [0: 631:
always @ (Enableor ReadWritel
tf (Enable)

If (ReadWrite) OataOut =Mem [Address);
else Mem (Address) " Dataln;

else OataOut " 4'bz;
endm odu le

II 64 x 4 memory

II Read
II Write
II High imped ance slate

TIming Waveforms

The operat ion of the memory unit is controlled by an external device such as a central processing
unit (CPU) . The CPU is usually synchronized by its own clock . The memory. ho wever. docs
not employ an internal clock. Instead. its read and write ope rations are speci fied by co ntrol in­
puts. The access time of memory is the time required to se lect a word and read it. The cycle
lime of memory is the time requ ired to comple te a write o peration. Th e CPU mu st provide the
memory control sig nals in such a way as to synchronize its internal clocked ope rat ion s with
the read and write operatio ns of memory. Thi s means tha t the access time and cycle time of
the memory mu st be within a time equal to a fixe d number of C PU clock cycles .

Suppose as an examp le that a CPt; operates with a clock freq uency of50 ~Hz., givi ng a pe­
riod of 20 ns for one clock cycle. Suppose also that the CPU communicates wi th a memory
whose access time and cycle time do not exceed 50 ns. This means that the write cycle termi­
nates the storage of the selected word within a 50-ns interval and that the read cycle provides
the output data of the selected word within 50 ns or tess . (The two numbers are nOI always the
same.) Since the periodof the CPU cycle is 20 ns. it will be necessary 10 devote at least two­
and-a-half. and possibly three. clock cycle!'. for each memory req ues t.

The memory timing shown in Fig. 7.4 is for a CPU with a 5O-~Hz clock anda memory with
50 ns maximum cycle time. The write cycle in part (al shows three 2Q.ns cycles: n .T2.andT3.
Fora write operation. the CPU must provide the addre..s and input data 10 me memory. This is done
at the beginning of TI . (The two lines that cross each other in the address and data waveformsdes­
ignate a poss ible change in value of the multiple lines.) The memory enable and the readlwri te sig­
nals must beactivated after the signals in the addres.s lines are stable in order to avo id destroying
data in other memory words. The memo ry enable signal switches to the high level and the read/write
signal switches to the low level to indicate a write operation. The two control signals must stay active
for at least 50 ns. The add ress and data signals mu st remain stable for a short time after the con­
trol signal s are deact ivated. At the completion of the thin! cloc k cycle. the memory write operat ion
is completed and the C PU can access the memory again with the next TI cycle.

The read cycle shown in Fig. 7.4(b) has an address for the memory provided by the CPU.
The memory-enab le and read/wri te signals must be in thei r high level for a read operation.
The me mory place s the da ta of the word selected by the address into the output da ta lines with­
in a 5O-ns interval (or less) from the time that the memory enable is activated . The CPU can
transfer the data into one of its interna l registers during the negative transition of T3.The next
n cycle is available for another memory request.

290 Chapter 7 M emory and Programmable Logic

_ 20 nsee -

Cloo;:k
-.I Tl \'--_ / T2 \'--~/ T3 \,--_ 0 1

Addr ess validMemory~ >Caddress --'"',c~~~~'__ _

MCmOry-.!
enable

Read!
Write

\ (Initiate writing

L
Latcbed.r:

Data
input

(a) Write cycle

50 nsec •

Clock

Address valid

Memor -.!"'-
enable Initiate read

Memory~ >C
address --,"". -""""'''''''' _

L
Read!
Write

Data
output

________________~x Data valid >C
(b) Read cycle

FIGURE 7 .4
Memory cycle timing waveforms

Types of Memories

The mode of access of a memory system is determi ned by the type of components used. In a
random-access memo ry, the word locations may be thought of as being separated in space.
each word occupying one particular location. In a sequential-access memory. me informa tion
stored in some medium is not immediately accessible, but is available only at certain intervals
of time. A magnetic disk or tape unit is of this type. Each memory location passes me read and
write heads in turn. but information is read out only when the requested word has been reached.

Sect ion 7.3 Memory Decoding 291

In a random-access memory, the access time is always the samc regard less of the particular 10­
calion of the word . In a sequential -access memory. the time it takes to access a word depend!'>
on the pos ition of the word with respect to the posit ion of the read head : therefore. the access
time is variable .

Integra ted circuit RA~! units are available in two cpereting modes: static and dynamic. Sta­
tic RAM (SRA..\ 1Jconsists essentially of internal latches that store the binary information . The
store d information remains valid as long as po wer is applied to the unit. Dynamic RA M
(DRAM) stores the binary information in the form of e lectric charges o n capacitors provided
inside the chip by ~tOS transistors. The stored charge on the capaci tors tends to d ischarge with
time. andthe capacitors must beperiodically recharged by refreshing the dynamic memory. Re­
freshing is do ne by cycling through the words c\'ery few milliseconds to restore the decaying
charge. DRAM offers reduced power consumption and larger storage capacity in a singte mem­
Of)' chip. SRA M is easie r 10 use and has shorter read and write cycles.

Memory units that lose stored information when power is turned off are said to be volatile ,
CMOS integrated circuit RAM s, both static and dynamic. are of this category , since the binary
cells need externa l powe r to main tain the stored information. In contrast, a nonvolatile memo ­
ry, such as magnetic disk. retains its stored information after the remov al of power, This type of
memory is able to retain information because the data stored on magnetic components are rep­
resented by the d irection of mag netization . which is retai ned after power is turned off ROM is
another nonvolatile memory ,A nonvola tile memory enables dig ital computers to store programs
thai will be needed again after the computer is turned o n. Prog rams and data that ca nnot beal­
tered are stored in ROM . while other large programs are maintained on magnetic dish. The lat ­
rcr programs are tran sferred into the computer RA~I as needed. Refore the powt:r is turned off.
the binary information from tbe com puter RAM is transferred to the disk so that the informa­
tion wiII be reta ined .

7. 3 MEMORY DECODING

In addition to requ iring storage components in a memory unit. there is a need for decoding ci r­
cuits to select the mtmory word specified by the input addre..... In this sect ion. we present the
interna l construction of a RAM and demon strate the operunon of the decoder. To beable to in­
clude the entire memory in one d iagram. the memory unit presented here has a small capaci ty
of 16 bits. arran ged in four words of 4 bits each. An example of a two-d imensional coincident
decoding arrangement is presented to show a more efficient decod ing scheme that is used in
large memories. We then give an example of addr ess multi plexing commonly used in DRAM
integra ted circuits.

Internal Construction

The internal construction of a RA~1 of m words and n bits per word consists of m X II binary
storage cells and associated decoding ci rcu its for selecting individual words . The binary sror­
age cell is the basic building block of a memory unit. The equ ivalent logic of a binary cell that
stores one bit of information is shown in Fig. 7.5. The storage part of the cell is modeled by an
SR latch with associated gate s to form a D latch. Actually, the cell is an electroni c circuit with

292 Chapter 7 Memory and Programmable Logic

setea

Input -~----1=~=l_)

L_~<}- ""_ _ ReadiWrilt

OutpUI

•
Jnpur~

•I
Read w rue

Outpu t

FIc;,URE 7 .S
Memory ce ll

(b j Block diagram

four to six transistors. Nevertheless . it is poss ible and convenient to model it in term s of logic
symbols . A bin ary sto rage ce ll mus t be very small in order 10 be able to pack as many cells
as possible in the small area available in the integrated circuit chip. The binary ce ll stores one
bit in its internal latch . The select input enables the ce ll for reading or writi ng. and the
read/write input de termines the operation of the cell when it is selected. A I in the read/write
input provides the read operation by fanning a path from the latch to the output termi nal. A
oin the read/write input provides the write operation by forming a path from the input terminal
to the latch.

The logical co nstruction of a small RA..\1. is shown in Fig. 7.6. This RA\1 co nsists of four
words of four bits each and bas a total of 16 binary cells. The small blocks labe led Be repre­
sent the binary celt with its three inputs and one output. as specified in Fig. 7.Slb J. A memory
with four words need.. two addre ss lines. The two addre ss inputs go through a ~ X J. decoder
to select one of the four words. The decoder is enabled with the memory-enable input When
the memol'}' enable is O. al l outputs of the decoder are 0 and none of the memory words are se­
lected. with the memory select at I, one of the four word !'> is selec ted. dictated by the value in
the two address lines. Once a word has been selected. the read/write input determine... the op­
eration . During the read opera tion. the four bits of the selec ted word go through OR gates to
the output terminal.... (Note that the OR gates are drawn according to the array logic estab­
lished in Fig. 7.1.) During the write operation. the data available in the input lines arc trans­
ferred into the four binary cells of the selec ted word. The binary cells that are not selec ted are
disabled. and their previous binary values remain unchanged . When the memory selec t input
that goes into the decoder is equal to O. none of the word s are selected and the contents of all
cells remain unchanged regardless of the value of the read/write inpu t.

Commercial RA\h may have a capacity of thousand s of word s. and each word may range
from I 10 ~ bits. The logical constructio n of a large-capacity memory would be a direc t ex­
tension of the configuration shown here . A memory with 2· words of II bits per word requires
k address lines that go into a Ie X 21; decoder. Each one of the decoder outputs ~ICCh one word
of n bits for reading or writing .

Sectio n 7.3 Memory Decoding 293

Input data

Word ol---l-----,r---- -l-----,-----,l-----,- - -jf--,

2 x4
decoder

Word Jl--f-t-- ,---+-l----,---+-f---,- -t-j--,

'i.e
i.''"

fiNMemory
enable

Rc:adlWrite + __~'-_+-__...__ I_- -- __1--- .J

Ad"""
inpuh

Output data

FIGURE 7.6
Diagram of a 4)(4 RAM

Coincident Decoding

A decoder with k inputs and 2~ outputs requires 21 AND gates with k inputs per gate. The total
number of gates and the num ber of inputs per gate can he reduced by employing two decoders
in a two -dimensional selecti on scheme. The basic idea in two -dimensio nal decoding is to
arrange the memory cells in an array that is close as possibleto square. In this configuration.
two kJ2-input decoders are used instead of one k-inpul decoder. One decoder performs the row
selection and the othe r the co lumn selection in a two-dimensional matri x configuration .

The two-d imensional selection pattern is demonstrated in Fig. 7.7 for a l Kcword memory.
Instead of using a single 10 x 1.024 decoder. we use two 5 x 32 decoders. With the single
decoder. we would need 1.024 AND gates with 10 inputs in each. In the two-decoder case. we
need 64 A.~ gates with 5 inputs in each. The five most significant bits o f the address go to
input X and the five least significant bits go 10 input Y. Each word within the memory array is
selected by the coincidence of one X line and one Yline. Thus. each word in memory is selected

294 Chapter 7 Memory and Programmable logic

y

• 20 • • • 31

x

f iGURE 7.7
Two-dimensional decoding structure for a 1K·word memory

OIHXl

X

10100

Y

by the coincidence between I of 32 rows and I of 32 columns, for a total of 1.01.t \>, ord... Note
thaI eac h intersect ion represen ts a word that may have any number of bits.

As an example. consider the word whose address is~. The Io-bit binary equivalent o f~
is 0 1100 10100 . Th is makes X = 01 100 (binary 12) and Y = 10100 (binal') 10). The a -bit
word tha i is selected lies in the X decoder Output number 12 and the Ydecoder o utput number
20. All the bits o f the word are selected for reading or wri ting .

Address Mult iplexing

The SRAM memo ry cel l modeled in Fig. 7.5 typically contain.. six transistors. In order to build
memories with higher density, it is necessary to reduce the number of transistors in a cell. The
DRAM ce ll contains a single MOS transistor and a capacitor. The charge stored on the capac­
iter discharges with lime, and the memory cells must be periodic ally recharged by refresh ing
the memory. Becau se of their simple cell structure. DRA Ms typically have four time s the den­
sity of SRA~ls. Th is allows four times as muc h memory capacity 10 be placed on a given size
of chip. The cost per bit of DRAM storage is three to four times le ss than tha i of SRA~J stor­
age. A further COl'I savings is realized beca use of the lower PO" er requirement ofDRA~t cells.
These advantages make DRAM the pre ferred technology for large memories in personal dig­
ital computers . DRA M chips are available in capacities from ().lK 10 156~t bits. Most DRA~1s
have a l -bit word size. so several chips have to be combined 10 produce a larger word size.

Section 7.3 Memory Decoding 29S

Because of their large capacity. the address decoding of DRA~h is arranged in a two­
dimensional array. and larger memories often have multiple arrays. To reduce the number of pins
in the Ie package. designers utilize address multiplexing whereby one set of address input pins
accommodates the address components. In a two-dimensional array. the address is applied in two
pans at different times......ith the row address first and the column address second. Since the same
!IC1 of pins is used for both parts of the address, the size of the package is decreased significantly.

We will use a 64K·word memory to illustrate the addre...s-mulnplexing idea. Adiagram of the
decoding configuration is she.....n in Fig. 7.8. Thememory consists of a two-dimensional array of
cells arranged into 256 rows by 256 columns. for a tota.l. of 28 x 28 = 216 = 64K words. There
is a singledata input line. a single data output line, and a readlwriteoontrol. as well as an eigbt-bit
address input and two addless ,~1TlJ~j . the latter included for- enabling the row andcolumn address
into their respective registers.Therow address strobe (RAS) enables the eight-bit row register. and
the column address strobe (CAS)enables the eight-bit column register. The bar on top of the name
of the strobe symbol indicates thaI the registers are enabled on the zero level of the signal.

- - -" -~-

RAS-t--~-------,

RcadiWrile

Dala O,l"
in ou t

FI~URl 7 .8
Address multiplexing for a 64K DRAM

296 Chapter 7 Memory and Programma ble Logic

The 16-bit address is applied 10the DRA\1 in two steps using RAS andCAS. Initially, both
strobes are in the I ..rare. The 8-bil row address is applied to the address inputs and RAS i,-.
changed 10 O. This load.. the row address into the row address register, RAS also enables the row
decoder so that it can decode the row address andselect one row of the array. After a time equiv­
alent to the settling lime of lIle row selection. RAS goes back 10 the I level. The 8-bit column
address is then applied 10the address inputs. andCAS is driven 10 the0 Slate. This transfers the
column acdres.. into the column register and enables the column decoder. Now the two pam of
the address are in their respective registers. the decoders have decoded them 10select the 01lC' cell
corresponding to the row and column address. and a read or write operation can beperformed on
lIlat cell. CAS must go back 10the I level before initialing anoebermemory operation"

7 . 4 ERROR DE TEC TION AND CORRECTION

The dynamic physical interaction of the electrical signals affecting the data pam of a memory
unit may cause occasional errors in storing and retrieving the binary information. The reliability
of a memory unit may be improved by employing error-detecting and error-correcting codes.
The most common error detection scheme is the parity bit. (See Section 3.9.' A parity bit is gen­
erated and stored along with the data word in memory. The parity of the word is checked after
reading it from memory. The data word is accepted if the parity of the bits read out is correct.
If the parity checked results in an inversion. an error is detected, but it cannot be corrected.

An error-correcung code generates multiple parity check bits thai are stored \\ ith the data
word in memory. Each cbcck bit is a parity avera group of bits in the data word. When the word
is read back from memory. theassociated parity bits are also read from mernot) and compared
with a new set of check bits generated from the data that have been read. If the check bits are
correct. no error has occurred. If the check bits do not match the stored pari ty, lht!)-generate a
unique pattern. ca lled a syndrome. that can be used 10 identify the bit thai is in error. A single
error occurshen a bit changes in value from I to Oor from 0 10 I during the write or read op­
erauon. If the specific bit in error is identified, then the error can be corrected by compte­
menting the erroneous bit

Hamming Code

One of the most common error-correcting codes used in RAMs was devised by R. W. Ham­
ming. In the Hamming code. k. parity bits are added 10an n-bit data word. forming a new word
of n + k bits. The hit positions are numbered in sequence from I to n + k, These positions
numbered as a power of2 arc reserved for the parity bits. The remaining bits are the data bits.
The code can beused with words of any length. Before giving the general characteristics of the
code. we will illustrate its operat ion with a data word of eight bib .

Consider. for example. the 8-bil data word I10001no. We include ~ parity bits with the
8-bit word and arrange the 12 bits as follows:

Bil position: I
PI

2 3 4 5 6 7 8 9 10 II 12
Pl IP4 1 0 0 f\ 0 1 0 0

Section 7.4 Error Detection and Correction 297

The 4 pari ty bits , PI. P2, Pol' and PII• are in positions 1,2. 4. and 8. respectively. T he 8 bits of
the da ta word are in the remaining posi tions . Each parit y bit is ca lculated as follows:

PI = XOR orbits (3. 5, 7, 9. II) = 1$1 $ 0$0$ 0 = 0

P2 = XOR of bits (3, 6, 7. 10. 11) = 1 E& DEB O$ I EB O = 0

Pol = XO R of bits (5. 6, 7. 12) = I $ O$ OEB O = 1

Pg = XORofbi ts (9 . IO, 11.1 2) = 0 $ 1$0$0 = 1

Remember that the cxctusive-Ok operat ion performs the odd function: It is equal to I for an odd
number of " s in the variables and to 0 for an even number of I 'soThus. each parity bit is set so
that the total number of l 's in the chec ked positions. including the pari ty bit, is always even.

The 8-bit data word is stored in memory together with the 4 parity bits as a 12-bit compos ­
ite word . Subs tituting the 4 P bits in thei r prope r pos itions. we obta in the 12-bit co mposite
word stored in memory:

Bit position:
o
1

o
2

1
3

1
4

I 0 0
5 6 7

1
8

o I
9 10

o 0
11 12

When the 12 bits arc read from memory. they are checked again for errors. The parity is chec ked
over the same combination of bits. incl uding the parity bit. The 4 check bits are evaluated as
follows:

C j = XOR orbits (I. 3. 5, 7, 9. 11)

C2 = XORof bits (2 . 3.6. 7, 10. 11)

Col = XORofbit s (4. 5, 6, 7. 12)

Cg = XOR ofbi IS (8. 9, 10, 11. 12)

A 0 check bit de signates e ven parity over the checked bits and a I designates odd parity. Since
the bits were stored with even parity, the result . C = CgC.jC2CI = 0000. indicates that no error
has occurred. However. if C *" 0, then the 4 -bit binary number formed by the check bits gives
the position of the erro neous bit. For example. co nsider the fo llowing three cases:

Bit po sition: 1 2 J 4 5 6 7 8 9 10 11 12
0 0 1 I I 0 0 1 0 1 0 0 1'\0error

1 0 1 I 1 0 0 1 0 1 0 0 Error in bit I

0 0 I 1 () 0 0 1 0 1 0 0 Error in bit 5

In the first case, there is no error in the l2·bit word. In the second case. there is an error in bit
position number I bec ause it changed from 0 to I. The th ird case shows an error in bit posi­
tion 5. with a change from I toO. Evaluating the XQR of the corres ponding bits, we determine
the 4 check bits to be as follows:

c. C, C, C,
For no error: 0 0 0 0
With error in bit I : 0 0 0 1
With error in bit 5: 0 1 0 1

298 Chapter 7 Memory and Prog rammable Logic

Th us. for no error, we have C = 0000; with an error in bit I , we ob tain C = 0001: and with
an error in bit 5. we ge t C =: 0 101. When the binary number C is not equal to ()(X)(). it gives
the pos ition of the bit in error. The error ca n be corrected by complementing the correspondin g
bit. Note that an error can occ ur in the dat a word or in one of the pari ty bus.

The Hamming code can be used for da ta words of any length. In general. the Ham ming code
co nsists of II. chec k bits and n da ta bits. for a total of II + II. bits. The syndrom e value C co nsists
of II. bits and has a range of 2k values betw een 0 and 2k - I . One of these values. usually zero.
is used to indicate that no error was detected . leaving 2l - I val ues to indicate which of the
11 + k bits was in error. Each of these 2k - 1 values ca n be used to uniq uely describe a bit in
error. Therefore. the range of k mu st be equal to or greater than /I + k. giving the re lationship

2k- I ;;::: Il + k

Solving for n in terms of k, we obtain

2k - I - k. ;;:::11

This rel ationship gives a fonn ula for es tablishing the number of data bits tha t can be used in
co njunc tion wit h k check bits. For example, when k. = 3. the number of data bits that can be

used is 1/ ~ (23 - I - 3) = 4 . For k = 4. we have 2~ - 1 - -l = I I. giv ing " es 11. The
da ta word rna)' be less than I I bits, but mu st have at least 5 bits: otherwise. only 3 check bits
will be needed. Thi s justifies the use of 4 chec k bits for the 8 data bits in the previous exam­
ple . Range.. of II for va rious values of k are listed in Table 7.2.

The grouping of bits for parity generation and checking can be determined from a list of the
binary numbe rs from 0 through i ' - I . The least signific ant bit is a I in the binary numbers I. 3,
5. 7. and soon. The second significant bit is a I in the binary numbers 2. 3, 6. 7, and soon. Co m­
paring these numbers with the bit positions used in generating and checking parity bi~ in the Ham­
ming code. we note the relat ionship betwee n the bit gro upings in the code and the position of the
l-bits in the binary count sequence. Note that each group of bits starts with a number that is a
power of 2: I, 2. 4. 8. 16. etc. These numbers are also the position numbers for the parity bits .

Sing le-Error Correctio n, Double-Error Detection

T he Hammin g cede can de tec t and correc t on ly a single error. By adding another parity bit to
the coded word, the Hamming code ca n be used to correc t a single error and detect double
errors. If we include this add itional parity bn. rhcn the previous 12-bil coded word becomes
OO l llOOIOi OOPI ~ ' w here P13 is eval uated from the excl usive-O R of the other 12 bits. This

Table 7,2
Range ofData Bits for" Cheel Bits

Number of Check Bits, ,.

3
4
5
6
7

Range of Data Bits, IJ

2-4
5- 11
12- 26
27- 57

58-120

Section 7.5 Read-Only Memory 299

produces the 13·bit word 00 11100101 001 (eve n parity). When the 13-bit word is read from
mem ory. the chec k bits are evaluated. as is the parity P over the entire 13 bits. If P = O. the
pari ty is co rrec t (even parity). but if P = 1. then the parity over the 13 bits is incorrect (odd
pari ty). Th e fo llowing fo ur cases can arise:

If C = 0 and P = O. no erro r occurred.

If C :F 0 and P = I, a single error occ urred that can be corrected.

If C :F 0 and P = 0, a doub le error occurred that is detected . but that cannot be corrected .

If C = 0 and P = I. an error occ urred in the P13 bit.

This scheme may detect more than two erro rs, but is not guaran teed to detect all such errors.
Integrated circ ui ts use a modified Hamming co de to generate and check parity bit s for

sing le-error correctio n and double-error det ecti on . The modified Hamming code uses a
more efficient parity co nfig uration that balances the number of bits used to calculate the
XOR operation . A typ ical inte grate d ci rc uit that uses an 8-bit data word and a 5- bit check
wo rd is Ie type 74637. Oth er inte grated circuits are avai lable fo r dat a words of 16 and 32
bits. Th ese circuits ca n be used in co nj unctio n wi th a me mory unit to correct a sing le erro r
or detect double erro rs during write and read opera tions.

7 .5 READ -ONLY MEMORY

A ROM is essentially a memory device in which permanent binary information is stored. The
binary informatio n must be spec ified by the designer and is then embedded in the unit to form
the required interconnection patt ern. Once the pattern is established. it stays within the unit even
when po wer is turned off and on aga in.

A block diagram of a RO M consisting of k inputs and n output s is shown in Fig. 7.9. The in­
puts provide the address for memo ry. and the outputs give the data bits of the stored word that is
selected by the address. The number of words in a ROM is determined from the fact that k address
input lines are needed to specify 2k words. Note that ROM does not have data inputs. because it
does not have a write operat ion. Integrated circ uit ROM chips have one or more enable inputs and
sometimes come with three-state outputs to facilitate the construction of large arrays of ROM .

Con sider. for example. a 32 X 8 ROM. The unit consis ts of 32 word s of 8 bits each. Th ere
are five input lines that form the bin ary number s from 0 through 31 for the address. Figure 7.10
shows the internal logic construction of this RO M. The five inputs are decoded into 32 distinct
outputs by means of a 5 X 32 decoder. Each output of the decoder represents a memory address.

n outputs (data)

FIGURE 7.9
ROM block diagram

300 Chapt er 7 Mem ory and Programmable Logic

A,

I
V

I
A. A, A. A, A, A, '"FIGURE 7.10

Internal logic of a 32 x 8 ROM

The 32 outputs of the decoder are connected to each of the eight OR gates. The diagram shows
the array logic convention used in complex circuits. (See Fig. 6.1.) Each OR gate must becon­
sidered as having 32 inputs. Each output of lhe decoder is connected to one of the inputs of each
OR gate. Since each OR gate has 32 input connectio ns and there are 8 OR gates, the ROM con­
tains 32 x 8 = 256 internal connections. In general. a 21 X n ROM will have an intern al
k X 21 decoder and n OR gates. Each OR gate has 2k inputs, which are connected to each of
the outputs of the decoder.

The 256 intersectio ns in Fig. 7.10 are programmable. A programmable connection between
two lines is logically equivalent to a switch that can bealtered to be either closed (meaning that
the two lines are co nnected) or open (meaning that the two lines are disconn ected). The pro­
gramm able intersection between two lines is sometimes called a crosspoint. Various physical
devic es are used to implement crosspoint switche s. One of the simplest technologie s employs
a fuse that normall y connects the two points. but is opened or "blown" by the app lication of
a high-voltage pulse into the fuse.

The internal binary storage of a ROM is specified by a truth tab le that shows the word con­
lent in each addres s. For example. the content of a 32 X 8 ROM may be speci fied with a truth
table similar to the one shown in Table 7.3. The truth table shows the five inputs under which
are listed all 32 addresses . Each addre ss stores a word of 8 bits. which is listed in the outputs
columns. The table shows on ly the first four and the last four words in the ROM. The complete
table must include the list of all 32 words.

The hardware procedure that programs the ROM blows fuse links in accordance with a
given truth table . Fur example. programming the ROM according to the truth table given by
Table 7.3 result s in the configuratio n shown in Fig . 7 ,11. Eve ry 0 listed in the truth table

Section 7.5 Read-Only Memory 301

Table 7. 3
ROM Truth Table (Partial)

In pu ts Outputs

I, I, I, I, I, A, .. A, A, A, A, A, A,

0 0 0 0 0 I 0 I I 0 I I 0
0 0 0 0 1 0 0 0 I 1 I 0 I
0 0 0 1 0 1 1 0 0 0 I 0 I
0 0 0 1 I 1 0 1 I 0 0 I 0

0 0 0 0 0 0 1 0 0 I
0 I 1 1 I 0 0 0 I 0
1 0 0 1 0 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1

I.

I,

/,

I ,

", '!lllllJ.- -4----if----f--+--+- ---1'"--- f-- + - -

~~;T ~?;.:::'
,:.." ·;1,"

:' :28 f---f--- f--- +-- +--+--+ - +-+--
29f---+-4--'f--t- + - I--t- + ­
3O f-+~f-+--jI-+--j-+--j­

'f".} l f----+-+ - + - >f..----jf-----+- + - +-­
'---""---"''''''-'-'

A,

FIGURE 7.11
Prog ramming the ROM acco rding to Table 7.3

specifies the absence of a connec tion. and every I listed specifies a path that is obta ined by a
connection. For example. the table specifies the eigh t-bit word 101100 10 for permanent stor­
age at address 3. The four O's in the word are programmed by blowing the fuse links between
output 3 of the decoder and the inputs of the OR gates associated with outputs A(i. AJ• A2. and
Ao. The four l 's in the word are marked with a X to denote a temporary connect ion, in place
of a dot used for a permanent connection in logic diagrams. When the input of the ROM is
000 II . all the outputs of the decoder are 0 except for output 3, which is at logic I. The signal

302 Chapter 7 Memory and Programmable l ogic

equivalent to logic I at decoder output 3 propagates through the connections to the OR gate out­
puts of A , . A3. A4. and A]. The other four outputs remain at O. The result is that the stored word
10I I00 rOls applied to the eight data outputs.

Combinat ional Circuit Implementat ion
In Section 4.9. it was shown that a decoder generates the 2Krnimerm s of me k input variables.
By inserting OR gales to sum the mintenns of Boolean functions. we were able to gene rate any
desired combinational circu it. The ROM is essent ially a device that includes both me decode r
and the OR gates within a single device to form a minterm generator. By choos ing connectio ns
for those minterms which are included in the function , the ROM outputs can be programmed
to represent the Boolean functions of the output variab les in a combinational circuit.

The internal operation of a ROM can be interpreted in two ways. The first interpretation is that
of a memory unit that contains a fixed pattern of stored words. The second interpretation is mat of
a unit which implements a combinational circuit. From this point of view. each output terminal is
considered separately as the output of a Boolean function expressed as a sum of minterms. For
example. the ROM of Fig. 7.11may beconsidered 10 bea combinational circuit wi th eight outputs.
each a function of the five input variables. Output A , ca n beex pressed in sum of minterms as

A,(I,. I,. J,. 11. /0) ~ };(O. 2. 3.... . 29)

(The three dots represent minterms 4 through 27, which are nOI speci fied in the figure.I A con­
nection marked with X in the figure produces a minterm for the sum. All other crosepoints
are not connected and are not included in the sum.

In pract ice, when a combinational circuit is designed by means of a RO\t. it is not neces­
sary to design the logic or to show the internal gate connections inside the unit All that the de­
signer has to do is specify the particular ROM by its Ie number and provide me applicable truth
table. The truth table gives all the information for programming the RO~1. No internallogic
diagram is needed to acco mpany the truth table.

Design a combinat ional circ uit using a ROM. The circuit accepts a three-bit number and out­
puts a binary number equal to the square of the input number.

The first step is to derive the truth table of the combinational circuit. In most cases. this is
all that is needed. In other cases , we can use a partial truth table for the RO\I by utilizing cer­
tain properties in the output variables. Table 7.4 is the truth table for the combinational circuit.
Three inputs and six outputs are needed to accom modate all possible binary numbers. We note
that output Bo is always equal to input Ao. so there is no need to generate Bo with a ROM.
since it is equal to an input variable. Moreover, output B] is always O. so this output is a known
constant. We actually need to generate only four outputs with the ROM; the other tWOare read­
ily obtained. The minimum size of ROM needed must have three inputs and four outputs. Three
inputs specify eight words, so the ROM must be of size 8 x 4. The ROM implementation is
shown in Fig. 7. I2. The three inputs specify eight words of foue bits each. The truth table in
Fig. 7.12(b) specifies the information needed for programming the ROM. The block diagram

Section 7.S Read-Only Memory 303

Table 7.4
Truth Table for Circuit of Example 7. 7

Inputs Outputs

A, A, Ao ., ., ., ., ., ., Decimal

0 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 1 I
0 I 0 0 0 0 I 0 0 4
0 I I 0 0 I 0 0 I 9
I 0 0 0 I 0 0 0 0 16

I 0 I 0 I I 0 0 I 25
I I 0 I 0 0 I 0 0 J6
I I I 1 I 0 U U I 49

0 - -

li.ff/;/{{:!-W%f~~', "1//,.•...
I,' i~'//(/j;~~j Ii!;j'ij;:

• '. I ", ".".,

8 x 4 ROM
[·'i1:{tXi,* f 1.4,1?/... ··c,".~l...... '...~.i,}, /·j.'I/-";:.1-;':fr~· ~1.:l,?}i!.I. .',J

(al Block diagram

B, A, A, Ao 8, 8 , B, B,

B, 0 U 0 0 0 0 0

fl ,
0 0 1 0 0 0 0
U I 0 0 0 0 I

B, 0 I 1 0 0 I 0
I 0 0 0 1 U 0

8, I 0 1 0 1 I 0
I I 0 I 0 0 I

8 , I I I I 1 0 0

(b) ROM tr uth table

FIGURE 7.12
ROM Implementation of Example 7.1

of Fig. 7.12(a) shows the required connections of the combinat ional circuit.

•
Types of ROMs

The requ ired paths in a ROM may beprogram med in four different ways. The first is ca lled mask
programming and is done by the semiconductor company duri ng the last fabrication process of
the unit. The procedu re for fabricating a ROM requires that the customer fill out the truth table
he or she wishes the ROM to satisfy. Th e truth table may be submitted in a spec ial fonn pro­
vided by the manufacturer or in a specified form at on a computer output medium. The manu­
facturer makes the corresponding mask for the path s to prod uce the 1's and D's according to the
customer's truth table. This procedure is costly because the vendor charges the customer a spe­
cial fee for custom maski ng the particular ROM. For this rea son, mask progranuning is eco­
nomical on ly if a large quantity of the same ROM configuration is to be ordered.

For small q uantities, it is more economica l to use a second type of ROM called
programmable read-only memory, or PROM. When ord ered, PROM units contain all the fuses
intact. giv ing all ls in the bits of the stored words. The fuses in the PROM are blown by the

304 Cha pter 7 Memory and Programmable Log ic

application of a high-voltage pulse to the device through a special pin. A blown fuse defines a bi­
nary 0 state and an intact fuse gives a binary I state. This procedure allows the user to program
the PRO~ in the laboratory to achieve the desired relationship betwe en input addresses and
stored words. Special instruments called PROM programmers are avai lable com mercially 10 fa­
cilita te the procedure. In any case, all procedures for programming RO~1s are hardware proce­
dure s, even though the word programming is used .

The hardware procedure for prog ramming ROMs or PROM s is irreversible. and once pro­
gramrned.tbe fixed pattern is permanent and cannot be altered. Once a bit pattern has been es­
tablished . the un it must be discarded if the bit pattern is to be changed. A third type of RO~1

is the erasable PROM. or EPROM. which can be restructured to the initial state even though
it has been programmed previo usly. When the EPROM is placed under a special ultravio let light
for a given length of time. the shortwave radiation d ischarges the internal floating gates tha t
serve as the programmed connect ions. After erasure, the EPROM returns to its initial state and
can be reprogrammed to a new set of values.

The fou rth type of ROM is the electrically erasable PROM (EEPRO~ or E2PROM). This
device is like the EPROM. except that the previously programmed connections can be erase d
with an electrical sig nal instead of ultravio let light. The advantage is [hat the device can be
erased without remov ing it fro m its socket.

H ash memory devices are similar to EEPROMs. but have additional buil t-in circuitry to
selectively program and erase the device in-circuit, without the need for a special programmer.
They have widespread app licatio n in modern technology in cell phones. digital camera... se t­
top boxes. digital TV. telecommu nications. non volatile data storage. and microconrrollers.
Their low consumpt ion of power makes them an attractive storage med ium for laptop and note­
book computers. Flash memories incorporate additional circuitry , too. allowi ng simultaneous
erasing of block s of memory. for example, of size 16 Kbytes to 64 Kbytes. Like EEPROMs.
flash me mories are subject to fatigue. typical ly hav ing about 105 block erase cycles.

Combinational PLDs

The PROM is a combinational programmable logic device (PLD}-an integrated circuit with
programmable gates divided into an AND array and an OR array to provide an A."D-OR sum­
of-product implementation. There are three major types of combinational PLDs. differing in
the placement of the programmable connections in the A~D-OR array. Figure 1.13shows the
configuration of the three PLOs. The PROM has a fixed AND array con structed as a decoder
and a programmable OR array. The prog ramm able OR gates implement the Boolean functions
in sum-of- mintenns form. The PAL has a programmable ASD array and a fixed OR array. The
AND gates are programmed to prov ide the product terms for the Boolean functions. which are
log ically summed in each OR gate. The most flexible PLD is the PLA. in which both the A.'<0
and OR arrays can beprogrammed. The product terms in the AND array may be shared by any
OR gate to provide the required sum-of-prod ucts implementation. The names PAL and PLA
emerged from different vendors during the development of PLOs. The implementation ofcom­
binational circuits with PROM was demonstrated in this section. The design of combinational
circuits with PLA and PAL is presented in the next two sections.

Section 7.6 Programmable Logic Array 305

(a) Programmable read-only memory (PRO~)

IV "·;·:·' C·:->:'·L '· '·' '''''''''' '{<'· '...,.
Inputs + ,,-.-programr:na

ble
.... f-------J:..L.~:t.'.:.:~.·.'::._.:.:.;.:~..:.:.~...::~:·.:""".R·.·,,·~~.:,,:.·:~.'. ,::.:::~.•.:'.~.~.:.-~.~.~.~.;:..~.~.:.:~.~.:' :I---- Outpl<lS

!\:~:;1t~.~~r.~tf.~i;$·': ;v~.:'.:-,-}.~<:
(b) Programmable array logic (PAL)

tnputs ------+i~zt~~;~.~::1: f-------r
(c) Programmable logic array (PLAl

FIGURE 7.13
Bai ic configu ration of three Pl Ds

7 . 6 PROGRAMMABLE LOGIC ARRAY

Outputs

The PLA is similar in concept to the PRO M. except that the PLA does not provide full decod­
ing of the variables and does not generate all the minterms. The decoder is replaced by an array
of AND gates that can be programmed to generate any product tenn of the input variables.
The product terms are then connected 10 OR gates to provide the sum of products for the re­
quired Boolean functions.

The internallogic of a PLA with three inputs and two outputs is shown in Fig. 7.14. Such a
circuit is too small to be useful commercia lly, but is presented here to demonstrate the typical
logic configuration of a PLA. The diagram uses the array logic graphic symbols for complex cir­
cuits. Each input goes through a buffer-inverter combination, shown in the diagram with a com­
posite graphic symbol, that has both the true and compleme nt outputs. Each input and its
complement are connected to the inputs of each AND gate, as indicated by the intersections be­
tween the vertical and horizontal lines. The outputs of the AND gates are connected to the in­
puts of each OR gate. The output of the OR gate goes to an XOR gate, where the other input
can be programmed to receive a signal equal to either logic I or logic O. The output is inverted
when the XOR input is connected to 1 (since x $ 1 = x'). The output does not change when
the XOR input is connected to 0 (since x $ 0 "" x) . The particular Boolean functions imple­
mented in the PLA of Fig. 7.14 are

F1 = AB' + AC + A' BC'

F, ~ (AC + BC)'

306 Chapter 7 Memo ry and Programmable logic

B -----tL:==:::;l

-+-+--iI-+-+-+---1~}---+-~I<-- AC

'~"C- --t--t- - BC"'$.:§f£

C C' B B' A A ' I--t-- o
t--+-- l

i f;ii;:>- F,

F,

FIGURE 7.14
PLA with three Inputs, four product terms, and two outputs

The product terms generated in each AND gate are listed along the output of the gate in the
diagram. The product term is determined from the inputs whose crosspoinrs are connected and
marked with a X. The output of an OR gate gives the logical sum of the selected product terms.
The output may be complemented or left in its true form, depending on the logic being realized.

The fuse map of a PLA can be specified in a tabular form. For example, the programming
table that specifies the PLA of Fig. 7.14 is listed in Table 7.5. The PLA programming table con­
sists of three sections . The first section lists the product terms numerically. The second section
specifies the require d paths between inputs and AND gates. The third section specifies the
paths between the AND and OR gates. For each output variable, we may have a T'(for true] or
C (for complement) for program ming the XOR gate. The product terms listed on the left are
not part of the table ; they are included for reference only. For each product term. the inputs are
marked with I, 0, or - (dash). If a variable in the product term appears in the form in which
it is true, the corre sponding input variable is marked with a 1. If it appears complemented. the
corresponding input variable is marked with a O. If the variable is absent from the product
term, it is marked with a dash.

Section 7.6 Programmable LogicArray 307

Table 7.5
PtA Programming Tobie

Product Term

AB '
AC
BC
A' BC'

1
2
3
4

No": See telll for mean ings of dal.Bes.

The paths between the inputs and the AND gates are specified under the column head "In­
puts" in the programming table. A I in the input column specifies a connection from the input
variable to the AND gate. A 0 in the input column specifies a connection from the comple­
ment of the variable to the input of the AND gate, A dash specifies a blown fuse in both the
input variable and its complement. It is assumed that an open terminal in the input of an AND
gate behaves like a I ,

The paths between the AND and OR gates are specified under the column head "Outputs ,"
The output variables are marked with l 's for those product terms which are included in the func­
tion, Each product term that has a I in the output column requires a path from the outpu t of the
AND gate to the input of the OR gate. Those marked with a dash specify a blown fuse , It is as­
sumed that an open terminal in the input of an OR gate behaves like a O. Finally. a T (true) out­
put dictate s that the other input of the corresponding XOR gate be connected to 0, and a C
(complement) specifies a connection to I.

The size of a PLA is specified by the number of inputs. the number of produc t terms, and
the number of outputs. A typical integrated circuit PLA may have 16 inputs, 48 product terms,
and eight outputs . For n inputs, k product terms. and m outputs, the interna l logic of the PLA
consists of n buffer- inverter gates, k AND gates, m OR gates, and m XOR gates. There are
2n x k connections between the inputs and the AND array, k x m connections between the
AND and OR arrays . and m connections associa ted with the XOR gates.

In designing a digital system with a PLA, there is no need to show the internal connections
of the unit as was done in Fig. 7.14. All that is needed is a PLA programming table from which
the PLA can be programmed to supply the required logic. As with a ROM, the PLA may bemask
programmable or field progra mmable. With mask programming. the customer submits a PLA
program table to the manufacturer, This table is used by the vendor to produce a custom-made
PLA that has the required internal logic specified by the customer. A second type of PLA that
is available is the field-programmable logic array, or FPLA, which can be programmed by the
user by means of a commerc ial hardware programmer unit.

In implementing a combinational circuit with a PLA, careful investigation must be under­
taken in order to reduce the number of distinct product terms. since a PLA has a finite number
of AND gates. This can be done by simplifying each Boolean function to a minimum number
of terms. The number of literals in a term is not important, since all the input variables are

308 Chapter 7 Memory and Prog rammable Logic

availabl e anyway. Both the true value and the complement of each function should be simpli­
fied 10 see which one can be expressed with fewer product terms and which one provides prod­
UCt terms thai are common to other functions.

Implement the following two Boolean functions w ith a PLA:

FI (A,B, C) = L (O. 1.2,4)

F, (A , B, C) ~ L (O. 5. 6. 7)

The 1.....0 functions are simplified in the maps of Fig. 7. 15. Both the true value and the com­
plement of the functions arc simplified into sum-of-products form . The combination that gives
the minimum number of product terms is

PI = (A B + AC + BC)'

aod

F2 "" AB + AC + A'B 'C'

This combination gives four distinct product terms: AB. AC, Be . and A'B'C' . The PLA pro­
gramming table for the combination is shown in the figure . Note that outpu t PI is the true OUt­
put, even though a C is marked ove r it in the table . This is because FI is generated with an
AND-OR circuit and is available at the output of the OR gate. The XOR gate complements the
function to produce the true FI outpu t.

PLA programming table

- 1
- 1 1
o 0 0

FIC;URE 7.15
Solutio n to Example 7,2

•

B

C

BC
A 00 01 11 10.. m, m, m,

0 1 0 0 0

l'
m, m. m. m,

0 1 1 1A

B

C

BC ,
A 00 01 11 10.. m, m, m,

0 1 1 0 1

l'
m, m, "', m,

1 0 0 0A

Ou tputs
(C) (T)

Fl £2

Inputs

A BC
Produ ct

1'=
AB 1
AC ,
BC 3
A'S 'C' 4

The combinational circuit used in Example 7.2 is too simple for implementing with a PLA.
It was presented merely for purposes of illustration.A typical PLA has a large number of inputs
and product terms. The simplification of Boolean functions with so many variables should be
carried OUI by means of compurer-asslsred simplification procedures,Thecomputer-aided design
program simplifies each function and its complement 10 a minimum number of terms. The pro­
gram then selects a minimum number of product terms that cover all functions in the form in
which they are true or in their complemented form. The PLA programmi ng table is then gener­
ated and the required fuse map obtained. The fuse map is applied to an FPLA programme r that
goes through the hardware procedure of blowing the internal fuses in the integrated circuit .

Section 7.7 Programmable Array Logic 309

7 .7 PROGRAMMABLE ARRAY LOGIC

Th e PAL is a programmable logic device with a fixed OR array and a programmable AND array.
Because only the AND gates are programmable, the PAL is easier to program than. but is not
as flexible as. the PLA. Figure 7. 16 shows. the logic configuratio n of a typical PAL with four in­
puts and four outputs. Each input has a buffer- inverter gale. and each output is generated by a
fixed OR gate. There are fou r sections in the unit. each composed of an AND-OR array that is
three wide. the term used to indicate that there arc three programmable AKD gates in each sec­
lion and one fixed OR gate. Each AND gate has 10 programmable input connections. shown in
the d iagram by 10 vertical lines intersecting each horizontal line. The horizonta l line symbol.
izes the mult iple-input configuration of the AND gate. One of the outp uts is connected to a
buffer-inverte r gate and then fed back into two inputs of the AND gates.

Commercial PALdevices contain more gates than the one shown in Fig. 7.16. A typical PAL
integrated circuit may have eight inputs. eight outputs. and eight sections. each consisting of an
elghr-wide Arcb -O g array. The output terminals are sometimes driven by three-state bulTers or
inverters.

In de signing with a PAL. the Boolean functions must be simplified to fit into each section.
Unlike the situation with a PLA. a product term cannot beshared among two or more OR gates.
Therefore. each function can be simplified by itself, without regard to common product terms.
The number of prod uct terms in each section is fixed. and if the number of tenus in the func­
tion is too large. it may be necessary to use two sectio ns to implement one Boo lean function .

As an example of using a PAL in the design of a combinational circuit. consider me followi ng
Boolean funct ions. given in sum-of-minterms form:

...(A. B. C. D) - I (2. 12. 13)

.,(A. B. C. D) = I (7. 8. 9.10. II . 12. 13. 14. 15)

y(A. 1i.C, D) = I (0.2. 3. 4.5. 6. 7.8. 10. 11. 15)

, (A. n.C. D) = I (U. 8. 12. 13)

Simplifying the four functions to a minimum numbcr of terms results in the following Boo lean
function s:

It-' = ABC' + A'B'CD'

x = A + BCD

J = A'H + CD + B'D '

1. = ABC' + A'H 'CD' + AC' D ' + A'S'C'D

= I I ' + AC'D' + A'S'C D

Note that the function for c has four product terms. The log ical sum of two of these terms is
equal to 1\'. By using 1\', it is possible to reduce the number of term s for z from four to three .

Th e PAL programming table is similar to the: one used for the PLA. excep t that o nly the in­
puts of the AND gates need to he programmed. Table 7.6 lists the PAL programming table for
the four Boo lean functions. The table is d ivided into four sections with three product terms in

310 Chapter 7 Me mory and Programmable Logic

P"xI""

AND gales inpUl'

2 3 4 S 6 7 8 9 10

I,

I ,

I ,

I,

term ----,
•
I

2

I I,
I

- ,

,
·i" .

~,
• Ii ./

6 .-

7

~

• ./

,

10

~

II
./

r.:-::7\
12 1'<1%:

2 3 4 S 6 7 8 9 10

f1GUR17. 16
PAL with four Inputs. four outputs. and a three- wide AND-OR rtrueture

F,

F,

F,

Section 7.8 Sequential Programmable Devices 311

T.ble 7,6
PAL Programming Tablr

AND Inpub

Product Term A • C D .. Ou tputs

1 I I 0 " " '" ABC' + A' B'CO'
2 0 0 I 0
3
4 x'" A + BC D
5

•
7 0)' - A'B~ CO ~ B'D '

8 I
9 0 0

10 l - w + AC'O' + A'B 'C'O
II 1 0 0
12 0 0 0 I

each. to conform with the PAL of Fig. 7.16. The first two sections need only two product terms
to impleme nt the Boolean function. The last section. for outpu t z, needs four product terms.
Using the output from w, we can reduce the function 10 three terms.

The fuse map for the PAL as specified in the programm ing table is shown in Fig . 7,17, For
each I or 0 in the table, we mark the corresponding intersection in the diagram with the sym­
bol for an intact fuse. For each dash. we mark the diagram with blown fuses in both the true
and complement inputs . If the A..'\Dgate is not used , we leave all its input fuses intact. Since
the corresponding input receive s both the true value and the complement of each input vari­
able. we have AA' '" 0 and the output of 1heA.''D gale is always O.

As with all PLDs. the design with PALs is facilitat ed by using computer-aided design tech­
niques. Theblowing of internal fuses is a hardware procedure done with the help of special elec­
tronic instruments.

7.8 SEQUENTIAL PROGRAMMA8lE DEVICES

Digital systems are designed with flip-flops and gates. Since the combinational PLD consists
of only gates, it is necessary 10 include external flip-flops when they are used in the design. Se­
quential programmable devices include both gates and flip-flops. In this way. the dev ice can
beprogrammed to perform a variety of sequential-circuit functions. The re are seve ral types of
sequential programmable devices available commercially, and each device has vendor-specific
variants within each type. The intema l logic of these devices is too complex to be shown here .
Therefore. we will describe three major types without going into their detailed construction:

I. Sequential (or simple) programmable logic device (SPLD)

2. Complex programmable logic device (CPLD)

J. Field-programmable gate array (FPGA)

312 Chapter 7 Mem ory and Prog rammable Logic

•

,

,

Al'OD gales inputs

A A' B B' C C D D' w w'
"~

te rm -----,
•

~
1

2
~

3 x

,

W I ',
~

, x

L AnfuSC's inUC1
(aJay~. 01

7

~

e --;::=J

9

10

11 --;::=J

12 I·m",
v.

x Fuce inlal;1

. Fuse blo.... n

Prod

D

c

8

A

A A' B' B' C C D D' w ~

FIGURE 7.17
Fuse map for PALas spedfled In Table 7.6

Section 7.8 Sequential Programmable Devices 313

Inputs ---------1
O Ulp UIJ

Aip-filil'S f-4"-

FlCoURE 7.18
Sequential programmable logic device

The sequentia l PLD is sometimes referred 10as a simple PLD to differentiate it from the cern ­
plex PLD. The SPLD includes fli p-flops, in addition to the AND--OR array, within the integrated
circuit chip. The result is a seq uential circu it as sho wn in Fig . 7.18. A PAL or PLA is. modi fied
by including a number of flip-flops connected 10 fonn a regis ter, The circu it outputs can be taken
from the OR gates or fro m the outputs of the flip-flops. Addit ional programmable co nnection s
are available 10 include the flip-flop outputs in the product terms forme d with the AND array.
The flip-flops may be of the D or the JK type.

The first programmable device developed 10 suppo rt sequential ci rcuit implementat ion is
the field-p rogram mable logic seq uencer (FPLS). A typical FPLS is orga nized around a PLA
with several o utputs driving flip- flops . Th e flip-flops are flexib le in that they ca n be pro­
grammed to operate as ei ther the JK o r the D type. The FPLS did nOI succeed commercia lly,
beca use it has too many programmable connectio ns. The configuratio n mostly used in a n
SPLD is the combina tional PAL together with 0 flip-flops. A PAL that includes flip-flops is
referred to as a regist ered PAL, to signify that the device co ntains flip. flop s in add ition 10 the
AND--DR arr ay. Each section of an SPLD is ca lled a macrocetl. which is a ci rcuit that comains
a sum-of-products co mbinatio nal logic function and an optional flip-flop. wewill assume an
AND-OR sum-of-products function, but in practice, it can be anyone of the two -leve l im­
plementations presented in Sec tion 3.7.

Figure 7.19 shows the log ic of a basic macrocelt . The AI'\D- OR array is the same as in the
co mbinational PAL shown in Fig. 7. 16. Th e output is driven by an edge-triggered D flip-flop
co nnected 10a common clock input and changes state on a clock edge . The output of the flip­
flop is co nnected to a three- state buffer (or invert er) controlled by an o utput-enable signal
marked in the diagram as OE. The o utput of the flip-flop is fed back into o ne of the inputs of
the program mable AND gates to provide the present-state co ndition for the sequential ci rcuit.
A typical SPLD has from 8 to 10 macrocells within one Ie package. All the flip-flop s are con­
nected to the common eLK input, and all three-Male buffers are controlled by the OE input.

In addition to programming the AND array, a macrocell may have other programm ing features.
Typical programming options include the ability to either use or bypass the flip-flop, the selection
ofclock edge polarity, the selection of preset and clear for the register, and the selection of the true
value or complement of an output. An XOR gate is used 10 program a true/compl ement condition.
Multiplexers select between two or four distinct paths by programming the selection inputs.

Th e design of a digi tal system using PLDs often requ ires the connection of severa l devices
to produce the complete specification. Forthis type of applicat ion, it is more economica l to usc
a complex programmable logic device (CPLD), which is a collection of indi vidual PLDs on a
single integrated circuit. A programmable interconnection structure allows the PLDs to be co n­
nected to eac h other in the same \ovay that can be done with individual PLDs.

314 Chapter 7 Me mory and Prog rammable Logic

eLK DE

-
i< D-D -t>I ~
@
'i§J , "" eLK

FIGURE 7 .19
Basic macrocell logic

110

.-
FIC;URE 7.20
General (PtD configuration

G
I <0

"ad

Figure 7.20 shows the general configuration of a CPLD. The device cons ists of multiple
PLDs interconnected through a programmable switch matrix . The input-output (110) blocks pr0­

vide the connec tions to the Ie pins. Each un pin is driven by a three-state buffer and can be
programmed 10act as input or output, The switch matrix receives inputs from the unblock and

Section 7.8 Sequent ial Programmable Devices 315

directs them 10 the individual mecrocetls. Similarly. selected OUtpUISfrom macrocell s are sent
to the OUtpUIS as needed. Each PlD typically contains from 8 to 16 macrocetls. usually fully
connected. If a macrocelt has unused product terms. they can beused by other nearby macro­
cells. In some cases the macrocell flip-flop is programmed to act as a D. JK. or T flip-flop.

Different manufacturers have taken different approaches to the general architectureof CPlDs.
Areas inhich they differ include the individual Pl.Ds (sometimes CalledjiuzClioll blocks), the
type of mecrocetls. the lJOblocks. and the programmable interconnectionstructure. The best way
10 investigate a vendor-specific device is 10look at !he manufacturer's literature.

The basic component used in VLSI design is the gal~ array.hich consists of a pattern of
gates. fabricated in an area of silicon. that is repeatedtbousards of times until the entirechip is cov­
ered w ith gates. Arrays of one thousand 10 several hundred thousand gales are fabricated w ithina
single Iechip, depending on the technology used.The design with gate arrays requires that the cus­
remer provide the manufacturer the desired interconnection pattern.The first few levels of the fab­
ricationprocess arecommon and independent of the final logic function.Additional fabrication steps
are required 10 interconnect the gates according to the specifications given by the designer.

A field-programmable gate array (FPGA) is a VlSI circuit that can be programmed at the
user's location. A typical FPGA consists of an array of hundreds or thousands of logic blocks.
surrounded by programmable input and output blocks and connected together via program­
mable Interconnections. There is a wide variety of internal configurations within this group of
devices. The performance of each typeof device depends on the circuit contained in its logic
blocks and the efficiency of its programmed interconnections.

A typical FPGA logic block consists of lookup tables. multiplexers. gales, and flip-flops, A
lookup table is a truth table stored in an SRA..\ l and provides the combinational circuit functions
for the logic block. These functions are realized from the lookup table. in the same way that com­
binational circuit functions are implemented with RO~1. as described in Section 7.5. For exam­
ple, a 16 x 2 SRA\f can store the truth table of a combinational circuit that has four inputs and
two OUtpUlS. The combinational logic section. along with a number of programmable multiplex­
ers, is used to configure the input equations for the flip-flop and the output of the logic block,

The advantage of using RA~1 instead of RO~f 10 store the truth table is thai the table can
be programmed by writing into memory. The disadvantage is thai the memory is volatile and
presents the need for the lookup table' s content 10be reloaded in the event that power is dis­
rupted . The program can be do wnloaded either from a host computer or from an onboard
PROM. The program remains in SRAM until the FPGA is reprogrammed or the power is turned
off, The device must be reprogrammed every time power is turned on. The ability to reprogram
the FPGA can serve a variety of applications by using different logic implementations in the
program.

The design with PLD, CPLD. or FPGA requires extensive computer-aided design (CAD)
tools to facilitate the synthesis procedure. Among the tools that are available are schematic
entry packages and hardware description languages (HDl'i), such as ABEL, VHDL. and Ver­
Hog. Synthesis tools are available that allocate. configure, and connect logic blocks to match
a high-level design description written in HDl. As an example of CMOS FPGA technology,
we will discuss the Xiliox FPGA.1

316 Chapter 7 Mem ory and Programmable l ogic

Xllln x FPGA.

Xilinx laun ched the world's first commercial FPGA in 1985. with the vintage XC2000device
famil y.2The XC3000 and XC.JOOO fami lies soon followed. setting the stage for tcday's Spar­
tann.I , and Vin t xTlo1 device families. Eac h evolution of devices brought improvements in den­
sity. performance. power cons umption, voltage levels. pin counts. and functionality. For
example. the Spartan famil y o f devices initially offered a maximum of oWK system gaits. but
today' s Spartan·3E o ffers 1.6 !1.t gates plu s block RAM .

Basic Xlllnx Architecture

The basic architecture of Spartan and earlier device families consists of an array of config­
urable logic blocks ICLBs). a variety of local and global routing resources. and input-output
(VO) blocks (lOBs). programmable VO buffers , and a SRAM·bas ed configuration memory. as
shown in Fig. 7.2 1.

Horizontal
tong line

Matrix
"--',~ '.

Switch
Maln Jl

Malrix

vemcet
long; line

FIGURE 7.21
Basic architecture of XlIIn. Spartan and predecessor devices

~Sce-.Xilinx.com for up-to-date informationabout XiIin, pmduet~.

Section 7.8 Sequential Programmable Devices 317

tonflg ura b le LogIc Block (CLB)

Each CLB consists of a programmable lookup tab le. multiplexers. registers. and paths for con­
trol signals. as shown in Fig. 7.22. Two of the function generators (F and G) of the lookup
table can generate any arbitrary function of four inputs. and the third (H) can generate any
Boo lean function of three input s. The H-function block can get its inputs from the F and G
look up tables or from externa l inputs. The three function generators can be program med to
generate (I) three different func tio ns o f three independent sets of varia ble s (two with four in­
puts and o ne with three inputs-one function must be regbrered within the CLB). (2) an arbi ­
trary funct ion of five varia bles. (3) an arb itrary function of four variables togeth er with some
funct ions of six variables. and (4) some functions o f nine variables.

Each e LB has two storage de vices that can beconfig ured as edge-trig gered flip-flops with
a common dock. or. in the XC4(X)()X. they can be configured as flip-flops or as transparent
latches with a common clock (programmed for either edge and separa tely invertible) and an
enable. The storage element s can get their inputs from the function generators or from the Din

input. The other element can get an external input from the HI input. Th e function generators
can also dr ive two outputs (X and Y) directly and independently of the outputs of the storage
elements . All of the se outputs can be connected to the interconnect network . The storage ele­
ments are dri ven by a global set/reset during power-up; the global set/ rese t is programmed 10

match the program ming of the loca l SIR control for a given storage element.

Dist ri but ed RAM

Tbe three function generators within a CLB can be used as either a 16 X 2 dual-pon RAM or a
32 X I single-pot RA\ t. TbeXC40Xl devices do rot bave block RA.\ t. buta group of thtir U Bs
can form an array of memory. Spartan deviceshave block RA.\ l:in addition to distributed RA.\1.

Interconnect Resources

A grid o f sw itch matrices overlays the archi tecture of CLB:i. to provide general-purpose inter­
connec t for branching and routing throughout the device. The interconnec t has three types of
general-purpose interco nnects: single- length lines. double-length lines. and long line... A grid
of hori zontal and vert ical single-length lines con nects an array orswitch boxes that provide a
reduced numbe r of connections between signal paths within eaeh box. not a full crossbar ..witch.
Each CLB has a pair of three-state buffers that can drive signals onto the nearest horizontal tines
above or below the CLR.

Direct (ded icated) interc onnec t lines provide routing between adjacent vertical and hori­
zontal CLBs in the same column or row. These are relatively high speed local connections
through metal . but are not as fast as a hardwired metal connection bec ause of the delay in­
curred by routing the signal paths through the transmission gales that configure the path. Di­
rect interconnect lines do not U'-C the switch matri ces. thus eliminating the delay incurred o n
paths going throu gh a matrix.'

) See XiliR'l. documentation for1M pin-ollC 00II" Clll i0ll5 10 clolat>lidl loc<1l inlm:onnttt5betw een a _B•.

318 Chapter 7 Memory and Programmable Logic

. "

Section 7.8 Sequential Programmable Devices 319

"';"

Intercon nect palh

FIGURE 7.23
RAM cell controlling a PIP t ransmis sion gate

Double-length lines traverse the distance of two CLBs before entering a switch matrix. skip­
ping every other CLB.These lines provide a more efficient implementation of intermediate-length
connections by eliminating a switch matrix from the path. thereby reducing the delay of the path.

Long lines span the entire array vertically and horizontally. They drive low-skew. high-fan­
out control signals. Long vertical lines have a programmable splitter that segments the lines and
allos t.....o indepe ndent routing channels span ning one-half of the array. but located in the
same column. The routing resources are exploited automatically by the routing soft.....are. There
are eight low-skew global buffers for clock distribution .

The signals thai drive long lines are buffered. Long lines can be driven by adjacent CLBs
or lOBs and may connect to three-state buffers that are availab le to CL Bs. Long lines provide
three-state buses within the architecture and implement wired-AND logic. Each horizontal
long line is driven by a three-state buffer and can be programmed to connect to a pull-up re­
sistor.hich pulls the line to a logical I if no driver is asserted on the line.

The programmable interconnect resources of the device connect CLBs and lOBs. either di­
rectly or through switch boxes. These resources consist of a grid of two layers of metal seg­
ments and programmable interconnect points (PIPs) within switch boxes. A PIP is a CMOS
transmission gate whose "tate (on or off) is determined by the content of a static RAM cell in
the programmabl e memo ry. as shown in Fig. 7.23. The connection is established when the
transmission gate is on (i.e .• when a I is applied at the gate of the a-channel transistor). and a
ois applied at the gate of the p-channel transistor. Thus. the device can be reprogrammed sim­
ply by changing the contents of the controlling memory cell.

The arc hitecture of a PIP-based interconn ection in a switch box is shown in Fig. 7.24.
which shows possible signal paths through a PIP. The configuration of CMOS transmission
gales determines the connection between a horizontal line and the opposite horizontal line
and between the vertical lines at the connection. Each switch matrix PIP requ ires six pass
transistors to establish full connect ivity.

320 Chapter 7 Mem ory and Programmable logic

I1
--"--

fer..~
- --,

- II
---L *-;.~.:.

" "
j

FIC;URE 7.24
Circuit for a program mable PIP

I/ O Block (lOB)

Each programmable va pin has a programmable lOB having buffers for compatibility with TTL
and CMOS signal levels. Figure 7.25 shows a simplified schematic for a programmable lOB.
It can be used as an input, an outp ut. or a bidirectional port. An lOB that is configured as an
input can have direct. latched. or registered input. In an output configuration. the lOB has di­
reel or registered output. The output buffer of an lOB has skew and slew control. The regis­
ters available 10 the input and output path of an lOB are driven by separate. invertible clocks.
There is a global set/reset.

Internal delay elements compensate for the delay induced when a clock signal passes through
a global buffer before reaching an rOB. This strategy eliminates the hold condition on the data
at an external pin. The three-slate output of an lOB puts the output buffer in a high-impedance
slate . The output and the enable for the output can be inverted. The slew rate of the output
buffer can becontrolled to minimize transients on the powe r bus when noncritical signals are
switched.The lOB pin can be programmed for pull-up or pull-down 10prevent needless power
consumption and noise.

The devices have embedded logic 10 support the IEEE 1149.1 (JTAG) boundary scan stan­
dard .There is an on-chip test access port (TAP) controller. and the l/O cells can be configured
as a shift register. Under testing. the device can be checked 10 verify thai all the pins on a PC
board are connected and operate properly by creating a serial chain of all of the va pins of the
chips on the board . A master three-state control signal puts all of the lOBs in high-impeda nce
mode for board testing.

Enhanceme nt s

Spartan chips can accommodate embedded soft cores. and their on-chip distributed. dual-port.
synchronous RA~f (Se lec tRAM) can be used to implement first-in. first-out register fi les

Sectio n 7.8 Sequentia l Prog ramma ble Devices 321

Slew rale
centro!

_.: Passive
.. pull-up
pull.dollln

Output . -J l)F-"-- ...J
clock

OU IPUI
bu ffer

Input
buffer

Inpur .--f>~-----==r­
clock

FIGURE 7.25
XC4000 series 106

"

SPOR::.~:i.f.--="-.

••
Ib X 2
J2)(1

Ram.:Irray
••

"

DO or O J ---:- -1MH- - -L:':::;::'-J

WE

WCLK

FIGURE 7.26
Distributed RAM cell formed from a lookup table

(A FOs). shift registers. and scratchpad memories. The blocks can becascaded to any width and
depth and located anywhere in the pan. but their use reduces the CLBs available for logic.
Figure: 7.26 displays the structure of theon-chip RAM that is fonned by programming a lookup

322 Chapter 7 Memo')' and Prog ramma ble Logic

table to implement a single-port RAM with synchronous wri te and asynchronous read. Each
CLB can be programmed as a 16 X 2 or 32 x I memory.

Dual-port RAMs are emulated in a Spartan devic e by the structure sho....-n in Fig. 7.27, which
has a single (common) write port and two asynchronous read ports. A CLB can form a mem­
ory having a max imum size of 16 X 1.

Xlllnx Spartan Xl FPGAs

Spartan XL chips are a further enhancement of Spartan chips, offering highe r speed and density
(40JXX) system gates, approximately 6,(0) ofwhich are usable) and on-chip, distributed SelectRA\ 1
mem ory,' The lookup tables of the devices can implement 22" different functions of n inputs.

4

WE - - -J

D --,----J

WCLK

~rite
~~rol

SPO

FIGURE. 7 .27
Spartan dual-port RAM

4 The maximum number of logic gates for a Xilinx fPGA is an estimate of the maximum number of logic H~ that
could be realized in a design consisting of only logic functions (no me mory). Logic capaciry is expressed in terms
of the number oftwo-in put :-JA.'ID gales tha I would be requ ired 10 implement the WIle Dumber and 1)"JlC of logi c
functions (Xllin x App. SOle).

Section 7.8 Sequential Programmable Devices 323

Table 7.1
Attributes of the Xilinx Spartan Xl Device Family

,i sp..... .. xL '? XCS05/XL' XCSlO/XL ·~ XCS20/XL·' . XCS1O/XL) XCS40/ XL

Ij; Sy~'~'~'G~t~1 2K-5 K 3K- IOK 7K-20 K IOK-30 K I3K-40K

1''I:Logic Cellsl ., 'i.~, 238 466 950 1.368 1,862

Max Logic Gates 3,000 5,000 10,000 13,000 20,000

I..Y; Aip-flops" i,:::;.' 360 616 J,120 1,536 2,016

MaxRA.\1 Bhs 3,200 6,272 12.800 18,432 25.088

l'i ',Max Avail llO / ' 77 112 160 192 224

I 20-30% of CLB~ 11.> RAM ,

2 1 Logic cell = fou r-inpul lookup table + flip- flop .

The XL series is targeted for applications for which low cost, low power. low packaging,
and low test cost are important factors constraining the design. Spartan XL devices offer up to
gO-MHz system performance. depending on the number of cascaded lookup tables, which re­
duce performance by introducing longer paths. Table 7.7 presents significant attributes of de­
vices in the Spartan XL family.

The architecture of the Spartan XL and earlier devices consis ts of an array of CLB tiles
mingled within an array of switch matrices, surrounded by a perimeter of lOBs. These de­
vices support only distribu ted memory. whose use reduces the number of CLBs that could
be used for logic. The relatively small amoun t of on-chip memory limits the devices to ap­
plica tions in which operations with off-chip memory devices do not compromise perform­
ance obje ctives. Beginning with the Spartan II series. Xilinx suppo rted configurable
embedded block memory, as well as distributed memory in a new architecture.

Xlllnx Spartan II FPGAs

Aside from improvements in speed (2OQ.MHz I/O switching frequency). density (up to 200,000
system gates) and operating voltage (2.5 V). four othe r features distinguish the Spartan II
devices from the Spartan devices: (1) on-chip block memory, (2) a novel architecture. (3) sup­
port for multiple va standards, and (4) delay locked loops.!

The Spartan II device family, manufactured in 0.2210. 18-J.Lm CMOS technology with six
layers of metal for interconnect. incorporates configurable block memory in addition to the dis­
tributed memory of the previous generations of devices. and the block memory does not reduce
the amount of logic or distributed memory that is available for the application. A large on-chip
memory can improve system performance by eliminating or reducing the need to access off-chip
storage.

' Spartan II devices do not >upport low-volwge differen tial signaling (LVDS) or jow-vone ge postuv e emitt er-couple d

logic (LVPECL) I/O standards.

324 Chapter 7 Memory and Prog rammable l ogic

Reliable clock distribution is the key to the synchronous operation of high-speed digital cir­
cuits. If the clock signal arrives at differen t times at different pans of a circu it. the device may
fail to operat e correctly. Clock skew reduces the available time budget of a circuit by lengthen­
ing the SClUp time at registers. It can also shorten the effective hold-time margin of a flip-flop
in a shift register and cause the register to sltift incorrectly. At high clock freque ncies {shorter
clock periods). the effect of skew is more significant because it represents a larger fraction of
the clock cycle time. Buffered clock trees are commonly used to minimize dock skew in FPGAs.
Xilinx provides all-dig ital delay-locked loops (OLLs) for clock synchronization or manage­
ment in high-speed circuits. OLLs eliminate the clock distribution delay and provide frequency
multip liers. frequency dividers. and clock mirrors.

Spartan II devices are suitable for applic ations such as implementing the glue logic of a
video capture system and the glue logic of an ISDN modem. Device attributes are summarized
in Table 7.8, and the evolution of tech nology in the Spa nan series is evident in (he data in
Table 7.9.

Tab le 7.8
Sparton II Device Attributes

Spartan II fPGA;Xc:zhs XOS3(r ~xciiso XC2S100 XC2S1S0 XC2S200

I3K-30K

972

24,576

132

23K-50K

1,728

32,768

176

37K- IOOK

2.700

40.960

196

S2K-150K

3.888

49.152

260

7I K- 100K

5.192

57.W,..
1 2Q-3O'K o{CLB ~ as RAM.
1 I Logic ce ll '" four-inputlookup table + Ilip-Ilcp.

Table 7.9
Comparison of the Spartan Device Families

XC4000 XC4000
Based Based

SK-40K 5K-40K

Distributed Distributed
RAM RAM

80 MHz 1 00 ~fHL

4 4

5 V 3.3 V

No No

v lnex
Based

15K- 2ooK

Block +
Distributed

100 MHz

16

1.5 V

Yes

Sect ion 7.8 Sequential Programmable Devices 325

_-,0000 0000 0000 0 0 0 0 000000ooS > .':':::-

l OLL 1000 0 0 0 DDDDDD~

~ ~ DDDDDDODDDDD~~
§D ~ DDnnDDDDnnDD ~ ~
§D ~ DDuuDDODuuDD ~ D§
§D ~ DDDDDDJDDDDDD~ D§
§D~ DDDDDOtDODDDD ~ D§
i=!D ~ DDnnDDiDDnnDD ~ Di=!tj] CUh :.i CLBs "t:j

U; DDuuDDUDuuDD;~
§D~ DDDDDD'DDDDDD~D§
I DLL IBBBBBB DDDDDD~

0 0 0 0 0 0000000 : 0 0 0 0 000000 00

F1CUR£ 7.28
Spartan II architecture

The top-level tiled architecture of the Spartan II device. shown in Fig. 7.28. marks a new
organization structure of the Xilinx parts. Each of fou r quadra nts of CLBs. is supported by a
Dll and is flanked by a 4.(J96-bit block6 of RAM. and the periphery of the chip is lined
with lOB s..

Each CLB contains four logic cells , organized as a pair of slices. Each logic cell. shown
in Fig. 7.29, has a four-inputlook up table.J ogic for carry and control. and a D-type flip-flop.
The CLB contains additional logic for configuring functions of five or six inputs.

The Spartan II part family provides the flexibility and capacity of an on-chip block RAM:
in addition. each lookup table can be configured as a 16 X I RAM (distributed). and the pair
of looku p tables in a logic ce ll can be configured as a 16 X 2 bit RAM or a 32 X I bit
RAM.

The lOB !'> of the Spa rtan II family are individually programm able to support the refer­
ence. output voltage . and termin ation voltages of a variety of high -speed memory and bus

6 Part. areI\ailabtt ""ith up10 I~ blocb l~bK bibl.

326 Chapter 7 Memory and Programmable Logic

Logic Cell

Y

YQD S Q

CK

bf
YB

CMry
end

Control
Log;,

GJ--H
Gl - -r-H

F51N

BY

SR-r==~§:J;=ttH--:

XQ

x
D S Q

CK

~X8

FJ--H
F2--r-H

BX
C1N

CLK
CE

FIGURE 7.29
Spartan II CLB slice

standards. (See Fig. 7.30.) Each lOB has three registers that can function as D.typt flip­
flops or as level-sensitive latches. One register (TFF) can be used to register the signal
that (synchronou sly) controls the programmable output buffer. A second register (OFF)
can be programmed to register a signal from the internal logic. (Alternatively, a signal from
the internal logic can pass directly to the output buffer.) The third device can register the
signal coming from the UO pad. (Alternatively. this signal can pass directly 10 the internal

Section 7.8 Sequential Programmable Devices 327

110
-~. f')n

To Other To Next
External I/O

V REF
Inputs of

Banks

Programmable
output buffer

EC

EC

OSR Q

IFF
CK

o

IQ
1

ICE---i1~=n

D SR 0
TIT

eLK - h --j CK

TeE~E~C
SR ----UJ=[,

fiGURE. 7.10
Spartan II lOB

logic.) A co mmon clock. d rives each register. bu t each has an inde pendent clock enable. A
programmab le delay eleme nt on the input path ca n be used to eli mi nate the pad-to-pad
ho ld time.

Xlllnx Vlrtex FPGA,

The vlrtex device series" is the leading edge of Xilinx techno logy. Thi s family of de vices ad­
dresses four key factors that influence the solutio n to comp lex system-level and system-an-chip
design s: (I) the level of integ rat ion, (2) the amount of embedded memory, (3) performance
(timing), and (4) subsystem interfaces. The fam ily targets applications requ iring a balan ce of
high- performance logic. serial connectivity. signal proces sing, and embedded processing (e.g.,
wirel ess co mmunica tions). Process rules for leadi ng-edge Virtex parts stand at 65 nm, with a

? Vmu, Vwx·t1. II Platform. II-Pm'ProX, and Vmcx-.sMulti-PlatformFPGA.

328 Chapter 7 Memory and Programmable Logk

•
•
•

OO ~
OO ~
OD ~
[!I]~

~~ ~
OO ~
OO~
DD~

0
0 '"<'" ""e ..

~

D ~ ;;- '"~

'"

0
'"0 <
'" "

" •
~ l-g

0 J! -a
~

'"-"0

DOD
DOD
ODD
D[!fl
DC~
DOD
DOD
O~b

'"< "'" ,
] t
). ;;- '"•"

'"<'" "e ,
~ ~}. 'a- '"~

•
•
•

DD
DD
DD
[II]
L:~
DD
DD
DD

DeM: Clock :\ianag~'

FICURE 7.J1
Virtex II overall architecture

G_'
Clock MuJO

I· V opera ting voltage. The roles allow up to 330,000 logic cells and over 200.lXlO internal
flip-flops with clod: enable. together with over 10 Mb of block RAM, and SSO·~ml clock
technology packed into a single die.

The vi ncx family incorporates physical (electrical) and protocol support for 20dilTerent1l0
standards, including LVDS and LVPECL, with individually programm able pins. Up to 12dig­
ital clock managers provide support for frequency synthesis and phase shifting in synchronous
applications requiring multiple clock domains and high-frequency 110. The vlnex arctnrec­
ture is shown in Fig. 7.3 1, and its lOB is shown in Fig. 7,32,

Problems 329

FIGURE 7.J2
Virtell lOB block

PROBLEMS

Answers 10 problem~ marked wilh - appear al the- e nd oflhc boo L.

7 .1 'Ibe rTk"rTlOf}' umts Ih31 follow are specified by the- number o f words times (he number of bilSper
word . How many addrC's~ lines and input-output data tines are needed in each ca se?
(a) 8K x 16
(b) :!G x 8
(c) 16M x 32
(d) 256 K x 64

7.2"' Give lhe number ot bytes stored in the memories Ii!>lcd in Problem 7.1.

7,J- Word number 723 in the memory show n in Fig. 7.3 contains the binary equivalento f 3.451. List
the IO·bil addres!> and the 16-hit memory content of the word .

7.4 Show the memory cycle nrning waveforms for the write and read operatio ns. Assume a CPU
cloc k of 100 MHz and a memory cycle lime of 25 ns.

7 .S Wri te a test bench for the memory described in HDL Example 7.1. Th e test prog ra m sto res
bin ary 5 in add ress 3 and binary 10 in address 43. The n Ihe two addresses are read to verify
the ir sto red co nte nts.

330 Chapter 7 Memory and Programmable Logic

7 .6 Enclose the 4 x 4 RAM of Fig. 7.6 in a block dia gram showing all inputs and outputs. Assum­
ing three- state outputs, construct an 8 X 8 memory using four 4 X 4 RAM units .

7.7' A 16K X 4 memory uses coincident decodi ng by splitting the internal decod er into X-selection
and r -sejectton.

(a) What is the size of each decoder, and how many Ar..ro gales are requ ired for decoding me
address?

(b) Determine me X and Y selection lines mat are enabled when the input addre ss is the binary
equivalent of 6,000 .

7.8' (a) How many 32K X 8 RAM chips are needed to provide a memory capacity of 256K bytes?

(b) How many lines of the addres s must be used to access 256K bytes? How many of these lines
are connected to the address inputs of all chips?

(c) How many lines must be decoded for the chip select inputs ? Specify the size of the decode r.

7.9 A DRAM chip uses two-dimensional address multiplexing. II has 13 common addresspins, wi th the
row address havin g one bit more than the column address. What is the capaci ty of the memory?

7 .1 0"' Given me g-bit data word 0 101101 1. generate the 13-bit composite word for the Hamming code
that corrects single errors and detects double errors .

7 . 1 1' Obtain the l5-bit Hamm ing code word for the It-bit data word 1100100 1010.

7 . 12' A 12-bil Hamming code word containing 8busofdata and 4 parity bits is readfrom memory. What
was the original 8-bit data word that was written into memory if the 12-bil word read out is as foljows:
(a) oo1סס 11010 1 0

(b) 10111 ooסס 1 10

(c l 101111 110100

7 .1 J ' How many parit y check bits must be included with the data word to achieve single-error correc­
tion and double-error detection when the data word contains
(a) 16 bits.
(b) 32 bits.
(c) 48 bits.

7 .14 It is necessary 10 formulate the Hamming code for four data bilS. !». ~, l\.and 1>,. together with
three parity bits. PI .~' and P4.

(a) ' Evaluate the 7-bit composite code word for the data word 00 10.
(b) Evaluate three check bits, C4•C2.and Cl, assum ing no error.
(c) Assum e an erro r in bit OJ during writin g into memory. Show how the erro r in the bit is

detected and correct ed.
(d) Add parity bit Ps to incl ude dou ble-error detection in the cod e. Assume that errors occurred

in bits fI and lJs. Show how me double error is detected.

7 .15 Given a 64 X 8 ROM chip with an enable input. show the external connections necessary to con­
struct a 256 x 8 ROM with four chips and a decoder.

7 .16' A RO~t ch ip of 4,096 x 8 bits has two ch ip select inputs andoperates from a 5'\'0It power sup­
ply. How many pins are neededfor the integrated circuit package? Draw a block diagram, and label
all input and output terminals in the ROM .

Problems 331

,"

I l~"
"
"
" flO'"

fiGURE P7.17

7.17 The 32 x 6 ROM. together with the 2° line, as shown in Fig. P7.17, convens a six-bit binary num­
ber to its corresponding two-digit BCD number. f or example. binary 100001 converts to BCD
0 11 0011(decimal 33). Specify the truth table for the ROM.

7.1~ Specify the size of a ROM (number of words and number of bits per word) that will accommo­
date the truth table for the following combinational circuit components:
(a) a binary multiplier that multiplies two a-bit binary words,
(b) a 4·bi t adder- subtracter,
(c) a quadruple two-to-one-line multiplexer with common select and enable inputs, and
(d) a BCD-to-seven.segment decoder with an enable input.

7 .19 Tabulate the PLA programming table for the four Boolean functions listed below. Minimize the
numbers of product terms.

A(x, y, ,) = L (I, 2,4,6)

B(x, y, a) = L (O, 1,6, 7)

C(X, y, e) = L (2, 6)

D(x, y, ,) = L (I , 2, 3,5 , 7)

7 .20 Tabulate the truth table for an 8 x 4 ROM that implements the Boolean functions

A(x, y, z) = L (O, 3, 4, 6)

B(x, y, e) = L (O , 1, 3, 7)

C(x, y, z) = L (I, 5)

D(x, y, ,) = L (O, 1, 4, 5, 7)

Considering now the ROM as a memory. Specify the memory contents at addresses I and 4.

332 Chapter 7 Memory and Programmable logic

7 .21 Derive tho: PLA programming table for the combinational circuit that squares a three-bit number.
Minimize the number of product terms. (See Fig. 7.12 for the cquive jent RO~I implementation.•

7 .22 Derive the RO:-'1 programming table for !he combinational circuit that squares a +.bit number. Min­
imize the number of product terms.

7 .23 Livt the PLA programm ing table for the BCD- to-e.\ce~s - 3 -code converter wh~ Boolean func­
tions are simplified in Fig. 4.3.

7 .24 Repeat Problem 7.23. using a PAL.

7 .25- The following is a truth table of a three- input. four-output combinational circuit:
Inpu t i Outpllh

• , • A B C 0

0 0 0 0 0 0

0 0 1 1

0 1 0 1 0

0 1 0 0

1 0 0 0 0

1 0 1 0 0 0

0 0

1 0

Tabulate the PAL programming table for the circui t. and marl; the fuse map in a PAL diagram
similar to the one shown in Fig. 7.17.

7.26 Using the registered macroceu of Fig. 7,19. show the fuse map for a sequential circuit with t.....o
inputs .r andy and one flip-flop A described by the input equation

DA = xffi..,,'Gl A

7.27 Modify the PAL diagram of Fig. 7.16 by including three clocked D-IYpe flip- nop ~ between the
OR gates and the outputs. as in Fig. 7.19 , The diagram should conform with the block diagram
of a sequential circuit. The modification will require three additional buffer- inverter gates and six
verticallines for the flip-flop outputs to be connected to the ASD array through programmable
connections. Using the modified registered PALdiagram. show the fuse map that will implement
a three-bit binary counter with an output carry.

7.28 Draw a PLA circuit to implement the functions
PI :: A'H + AC' + A.'BC'
F2 :: (AC + AB • Be)'

7.29 Develop the programming table for the PLA described in Problem 7.26,

References 333

REFERENCES

1. HAMMI~G , R. Vol. 1950 . Error Detecting and Error Correct ing Code s. Bell Svst. Tech. J. 29:

147-160.
2. KITSON, B. 1984. Programm able A rray Log ic Handbo ok . Sunnyvale, CA: Advanced Micro

Devices.
3. LIN, S., and D.1. COSTELLO, JR. 1983. Error Control Coding. Englewood Cliffs, NJ: Prentice-Hall.

4 . Memory Components Handbook. 1986. Santa Clara, CA: Intel.
S. NELSON, V. P., H. T. :-l"AGLE, J. D. IRWIK, and B. D. CARROLL. 1995. Digital Logic Circuit Analy-

sis and Design. Upper Saddle River, :-l"J: Prentice Hall.

6 . Programmable Logic Data Book. 1988. Dallas: Texas Instruments.
7. The Programmable Logic Data Book, 2d ed. 1994. San Jose, CA: Xilinx, Inc.
8. TOCCI, R. 1., and N. S. WIDMER. 2004. Digital Systems Prin ciples and Appli cations, 9th ed. Upper

Saddle River, NJ: Prentice Hall.
9 . TRIMBERGER, S. M. 1994. Field Programmable Gate Array Technology. Boston: Kluwer Academic

Publishers.
10 . WAKERLY. J. F. 2006. Digital Design: Principles and Practices, 4th ed Upper Saddle River, NJ:

Prentice Hall.

