Chapter 7

Memory and Programmable Logic

23

INTRODUCTION

A memory unit is a device to which binary information is transferred for storage and from
which information is retrieved when needed for processing. When data processing takes place,
information from memory is transferred to selected registers in the processing unit. Interme-
diate and final results obtained in the processing unit are transferred back to be stored in mem-
ory. Binary information received from an input device is stored in memory, and information
transferred to an output device is taken from memory. A memory unit is a collection of cells
capable of storing a large quantity of binary information.

There are two types of memories that are used in digital systems: random-access memory
(RAM) and read-only memory (ROM). RAM stores new information for later use. The process
of storing new information into memory is referred to as a memory wrire operation. The process
of transferring the stored information out of memory is referred to as a memory read opera-
tion. RAM can perform both write and read operations. ROM can perform only the read op-
eration. This means that suitable binary information is already stored inside memory and can
be retrieved or read at any time. However, that information cannot be altered by writing.

ROM is a programmabile logic device (PLD). The binary information that is stored within such
a device is specified in some fashion and then embedded within the hardware in a process is
referred o as programming the device. The word “programming" here refers to a hardware pro-
cedure which specifies the bits that are inserted into the hardware configuration of the device.

ROM is one example of a PLD. Other such units are the programmable logic array (PLA),
programmable array logic (PAL), and the field-programmable gate array (FPGA). APLD is an
integrated circuit with internal logic gates connected through electronic paths that behave sim-
ilarly to fuses. In the original state of the device, all the fuses are intact. Programming the
device involves blowing those fuses along the paths that must be removed in order to obtain

Section 7.2 Random-Access Memory 285

=D HHHD

(a) Conventional symbol (b) Array logic symbol

FIGURE 7.1
Conventional and array logic diagrams for OR gate

the particular contiguration of the desired logic function. In this chapter, we introduce the con-
figuration of PLDs and indicate procedures for their use in the design of digital systems. We
also present CMOS FPGAs, which are configured by downloading a stream of bits into the de-
vice to configure transmission gates to establish the internal connectivity required by a speci-
fied logic function (combinational or sequential).

Actypical PLD may have hundreds to millions of gates interconnected through hundreds to thou-
sands of internal paths. In order to show the internal logic diagram of such a device in a concise
form, it is necessary to employ a special gate symbology applicable to array logic. Figure 7.1 shows
the conventional and array logic symbols for a multiple-input OR gate. Instead of having multi-
ple input lines into the gate, we draw a single line entering the gate. The input lines are drawn per-
pendicular to this single line and are connected to the gate through internal fuses. In a similar
fashion, we can draw the array logic for an AND gate. This type of graphical representation for
the inputs of gates will be used throughout the chapter in array logic diagrams.

7.2 RANDOM-ACCESS MEMORY

A memory unit is a collection of storage cells, together with associated circuits needed to trans-
fer information into and out of a device. The architecture of memory is such that information
can be selectively retrieved from any of its internal locations, The time it takes to transfer in-
formation to or from any desired random location is always the same—hence the name random-
access memory, abbreviated RAM. In contrast, the time required to retrieve information that
is stored on magnetic tape depends on the location of the data.

A memory unit stores binary information in groups of bits called words. A word in memo-
ry is an entity of bits that move in and out of storage as a unit. A memory word is a group of
I's and 0’s and may represent a number, an instruction, one or more alphanumeric characters,
or any other binary-coded information. A group of 8 bits is called a byre. Most computer mem-
ories use words that are multiples of 8 bits in length, Thus, a 16-bit word contains two bytes,
and a 32-bit word is made up of four bytes. The capacity of a memory unit is usually stated as
the total number of bytes that the unit can store.

Communication between memory and its environment is achieved through data input and
output lines, address selection lines, and control lines that specify the direction of transfer. A
block diagram of a memory unit is shown in Fig. 7.2. The n data input lines provide the infor-
mation to be stored in memory, and the »n data output lines supply the information coming out
of memory. The k address lines specify the particular word chosen among the many available.
The two control inputs specify the direction of transfer desired: The Write input causes bina-
ry data to be transferred into the memory, and the Read input causes binary data to be trans-
ferred out of memory.

286 Chapter 7 Memory and Programmable Logic

k address lines

n data output lines

FIGURE 7.2
Block diagram of a memory unit

The memory unit is specified by the number of words it contains and the number of bits
in each word. The address lines select one particular word. Each word in memory is assigned
an identification number, called an address, starting from 0 up to 2* — 1, where & is the
number of address lines. The selection of a specific word inside memory is done by apply-
ing the k-bit address to the address lines. An internal decoder accepts this address and opens
the paths needed to select the word specified. Memories vary greatly in size and may range
from 1,024 words, requiring an address of 10 bits, to 23? words, requiring 32 address bits. It
is customary to refer to the number of words (or bytes) in memory with one of the letters K
(kilo), M (mega), and G (giga). K is equal to 2'°, M is equal to 2°°, and G is equal to 2.
Thus, 64K = 2'%,2M = 2%! and 4G = 2*%2.

Consider, for example, a memory unit with a capacity of 1K words of 16 bits each. Since
1K = 1,024 = 2" and 16 bits constitute two bytes, we can say that the memory can accom-
modate 2,048 = 2K bytes. Figure 7.3 shows possible contents of the first three and the last

Memory address

Binary Decimal Memory content

= 3ifaidsiiailiiadidinry
0000000000 0 s 1011010101011101

Sy ¥

10101 110001001 |
{

0000000001 1
LIRS

:
T
2

g
2, "%"

0000000010 2

4

0000110100011110 }
4

PPy

1101111000100101 §

1111111101 1021
1111111110 1022

1nnnim 1023

FIGURE 7.3
Contents of a 1024 X 16 memory

Section 7.2 Random-Access Memory 287

three words of this memory. Each word contains 16 bits that can be divided into two bytes. The
words are recognized by their decimal address from 0 to 1,023. The equivalent binary address
consists of 10 bits. The first address is specified with ten 0's; the last address is specified with
ten 1's, because 1,023 in binary is equal to 1111111111. A word in memory is selected by its bi-
nary address. When a word is read or written, the memory operates on all 16 bits as a single unit.

The 1K X 16 memory of Fig. 7.3 has 10 bits in the address and 16 bits in each word. As
another example, a 64K X 10 memory will have 16 bits in the address (since 64K = 216y
and each word will consist of 10 bits. The number of address bits needed in a memory is de-
pendent on the total number of words that can be stored in the memory and is independent of
the number of bits in each word. The number of bits in the address is determined from the re-
lationship 2¥ = m, where m is the total number of words and & is the number of address bits
needed to satisfy the relationship.

Write and Read Operations

The two operations that RAM can perform are the write and read operations. As alluded to
earlier, the write signal specifies a transfer-in operation and the read signal specifies a transfer-
out operation, On accepting one of these control signals, the internal circuits inside the mem-
ory provide the desired operation,

The steps that must be taken for the purpose of transferring a new word to be stored into
memory are as follows:

1. Apply the binary address of the desired word to the address lines.
2. Apply the data bits that must be stored in memory to the data input lines.
3. Activate the write input,

The memory unit will then take the bits from the input data lines and store them in the word
specified by the address lines.

The steps that must be taken for the purpose of transferring a stored word out of memory
are as follows:

1. Apply the binary address of the desired word to the address lines.
2. Activate the read input.

The memory unit will then take the bits from the word that has been selected by the address
and apply them to the output data lines. The contents of the selected word do not change after
the read operation, i.e., the word operation is nondestructive.

Commercial memory components available in integrated-circuit chips sometimes provide
the two control inputs for reading and writing in a somewhat different configuration. Instead
of having separate read and write inputs to control the two operations, most integrated circuits
provide two other control inputs: One input selects the unit and the other determines the oper-
ation. The memory operations that result from these control inputs are specified in Table 7.1.

The memory enable (sometimes called the chip select) is used to enable the particular mem-
ory chip in a multichip implementation of a large memory. When the memory enable is inac-
tive, the memory chip is not selected and no operation is performed. When the memory enable
input is active, the read/write input determines the operation to be performed.

288 Chapter 7 Memory and Programmable Logic

Table 7.1
Control Inputs to Memory Chip

Memory Enable Read/Write =~ Memory Operation

0 X None
1 0 Write to selected word
1 1 Read from selected word

Memeory Description in HDL

Memory is modeled in the Verilog HDL by an array of registers. It is declared with a reg key-
word, using a two-dimensional array. The first number in the array specifies the number of
bits in a word (the word length) and the second gives the number of words in memory (mem-
ory depth). For example, a memory of 1,024 words with 16 bits per word is declared as

reg[15: 0] memword [0: 1023];

This statement describes a two-dimensional array of 1,024 registers, each containing 16 bits.
The second array range in the declaration of memword specifies the total number of words in
memory and is equivalent to the address of the memory. For example, memword[512] refers
to the 16-bit memory word at address 512.

The operation of a memory unit is illustrated in HDL Example 7.1. The memory has 64
words of four bits each. There are two control inputs: Enable and ReadWrite. The Dataln and
DataOut lines have four bits each. The input Address must have six bits (since 2° = 64). The
memory is declared as a two-dimensional array of registers, with Mem used as an identifier that
can be referenced with an index to access any of the 64 words. A memory operation requires
that the Enable input be active. The ReadWrite input determines the type of operation. If
ReadWrite is 1, the memory performs a read operation symbolized by the statement

DataOut « Mem [Address];

Execution of this statement causes a transfer of four bits from the selected memory word spec-
ified by Address onto the DataQOut lines. If ReadWrite is , the memory performs a write op-
eration symbolized by the statement

Mem [Address] « Dataln;

Execution of this statement causes a transfer from the four-bit Daraln lines into the memory word
selected by Address. When Enable is equal to 0, the memory is disabled and the outputs are assumed
to be in a high-impedance state, indicated by the symbol z. Thus, the memory has three-state outputs.

HDL Example 7.1

/I Read and write operations of memory
/l Memory size is 64 words of four bits each.

module memory (Enable, ReadWrite, Address, Dataln, DataOut);
input Enable, ReadWrite;
input [3: 0] Dataln;

Section 7.2 Random-Access Memory 289

input [5: 0) Address;
output [3: 0) DataOut;
reg [3: 0] DataOut;

reg[3:0] Mem [0: 63]; // 64 x 4 memory
always @ (Enable or ReadWrite)
if (Enable)
if (ReadWrite) DataOut = Mem [Address]; // Read
else Mem [Address] = Dataln; Il Write
else DataOut = 4'bz; /i High impedance state
endmodule

Timing Waveforms

The operation of the memory unit is controlled by an external device such as a central processing
unit (CPU). The CPU is usually synchronized by its own clock. The memory, however, does
not employ an internal clock. Instead, its read and write operations are specified by control in-
puts. The access time of memory is the time required to select a word and read it. The cycle
time of memory is the time required to complete a write operation. The CPU must provide the
memory control signals in such a way as to synchronize its internal clocked operations with
the read and write operations of memory. This means that the access time and cycle time of
the memory must be within a time equal to a fixed number of CPU clock cycles.

Suppose as an example that a CPU operates with a clock frequency of 50 MHz, giving a pe-
riod of 20 ns for one clock cycle. Suppose also that the CPU communicates with a memory
whose access time and cycle time do not exceed 50 ns. This means that the write cycle termi-
nates the storage of the selected word within a 50-ns interval and that the read cycle provides
the output data of the selected word within 50 ns or less. (The two numbers are not always the
same.) Since the period of the CPU cycle is 20 ns, it will be necessary to devote at least two-
and-a-half, and possibly three, clock cycles for each memory request.

The memory timing shown in Fig. 7.4 is for a CPU with a 50-MHz clock and a memory with
50 ns maximum cycle time. The write cycle in part (a) shows three 20-ns cycles: T1, 72, and 7'3.
For a write operation, the CPU must provide the address and input data to the memory. This is done
at the beginning of 7'1. (The two lines that cross each other in the address and data waveforms des-
ignate a possible change in value of the multiple lines.) The memory enable and the read/write sig-
nals must be activated after the signals in the address lines are stable in order to avoid destroying
data in other memory words. The memory enable signal switches to the high level and the read/write
signal switches to the low level to indicate a write operation. The two control signals must stay active
for at least 50 ns. The address and data signals must remain stable for a short time after the con-
trol signals are deactivated. At the completion of the third clock cycle, the memory write operation
is completed and the CPU can access the memory again with the next 71 cycle.

The read cycle shown in Fig. 7.4(b) has an address for the memory provided by the CPU.
The memory-enable and read/write signals must be in their high level for a read operation.
The memory places the data of the word selected by the address into the output data lines with-
in a 50-ns interval (or less) from the time that the memory enable is activated. The CPU can
transfer the data into one of its internal registers during the negative transition of 7'3. The next
T1 cycle is available for another memory request.

290 Chapter 7 Memory and Programmable Logic
-<— 20nsec —»

Tl Y fie) T3 T1
Clock

Memory :>< : >C
address Address valid
Memory / \

enable ——

Initiate writing
Read/ \ /

Write

= X - X
input Data valid

(a) Write cycle

- 5S0nsec ——

42! T2 T3 Tl
Clock

Memory

wiiress Address valid >C
Memory _/ \ \

enable Initiate read

Read/
Write

Data s >C
output >< Data valid

(b) Read cycle

FIGURE 7.4
Memory cycle timing waveforms

Types of Memories

The mode of access of a memory system is determined by the type of components used. In a
random-access memory, the word locations may be thought of as being separated in space,
each word occupying one particular location. In a sequential-access memory, the information
stored in some medium is not immediately accessible, but is available only at certain intervals
of time. A magnetic disk or tape unit is of this type. Each memory location passes the read and
write heads in turn, but information is read out only when the requested word has been reached.

Section 7.3 Memory Decoding 291

In a random-access memory, the access time is always the same regardless of the particular lo-
cation of the word. In a sequential-access memory, the time it takes to access a word depends
on the position of the word with respect to the position of the read head; therefore, the access
time is variable.

Integrated circuit RAM units are available in two operating modes: sraric and dvnamic. Sta-
tic RAM (SRAM) consists essentially of internal latches that store the binary information. The
stored information remains valid as long as power is applied to the unit. Dynamic RAM
(DRAM) stores the binary information in the form of electric charges on capacitors provided
inside the chip by MOS transistors. The stored charge on the capacitors tends to discharge with
time, and the capacitors must be periodically recharged by refreshing the dynamic memory. Re-
freshing is done by cycling through the words every few milliseconds to restore the decaying
charge. DRAM offers reduced power consumption and larger storage capacity in a single mem-
ory chip. SRAM is easier to use and has shorter read and write cycles.

Memory units that lose stored information when power is turned off are said to be volatile.
CMOS integrated circuit RAMs, both static and dynamic, are of this category, since the binary
cells need external power to maintain the stored information, In contrast, a nonvolatile memo-
1y, such as magnetic disk, retains its stored information after the removal of power. This type of
memory is able to retain information because the data stored on magnetic components are rep-
resented by the direction of magnetization, which is retained after power is turned off. ROM is
another nonvolatile memory. A nonvolatile memory enables digital computers to store programs
that will be needed again after the computer is turned on, Programs and data that cannot be al-
tered are stored in ROM, while other large programs are maintained on magnetic disks. The lat-
ter programs are transferred into the computer RAM as needed. Before the power is turned off,
the binary information from the computer RAM is transferred to the disk so that the informa-
tion will be retained.

7.3 MEMORY DECODING

In addition to requiring storage components in a memory unit, there is a need for decoding cir-
cuits to select the memory word specified by the input address. In this section, we present the
internal construction of a RAM and demonstrate the operation of the decoder. To be able to in-
clude the entire memory in one diagram, the memory unit presented here has a small capacity
of 16 bits, arranged in four words of 4 bits each. An example of a two-dimensional coincident
decoding arrangement is presented to show a more efficient decoding scheme that is used in
large memories. We then give an example of address multiplexing commonly used in DRAM
integrated circuits,

internal Construction

The internal construction of a RAM of m words and » bits per word consists of m X n binary
storage cells and associated decoding circuits for selecting individual words. The binary stor-
age cell is the basic building block of a memory unit. The equivalent logic of a binary cell that
stores one bit of information is shown in Fig. 7.5, The storage part of the cell is modeled by an
SR latch with associated gates to form a D latch. Actually, the cell is an electronic circuit with

292 Chapter 7 Memory and Programmable Logic

Select
) Select
Y
) = OQueput Input —1 BC ——» Output
Input / |
B : ki) Read'Write
o] Read/Write
(a) Logic diagram (b) Block diagram

FIGURE 7.5
Memory cell

four to six transistors. Nevertheless, it is possible and convenient to model it in terms of logic
symbols. A binary storage cell must be very small in order to be able to pack as many cells
as possible in the small area available in the integrated circuit chip. The binary cell stores one
bit in its internal latch. The select input enables the cell for reading or writing. and the
read/write input determines the operation of the cell when it is selected. A 1 in the read/write
input provides the read operation by forming a path from the latch to the output terminal. A
0 in the read/write input provides the write operation by forming a path from the input terminal
to the latch.

The logical construction of a small RAM is shown in Fig. 7.6. This RAM consists of four
words of four bits each and has a total of 16 binary cells. The small blocks labeled BC repre-
sent the binary cell with its three inputs and one output, as specified in Fig. 7.5(b). A memory
with four words needs two address lines. The two address inputs go through a 2 X 4 decoder
to select one of the four words. The decoder is enabled with the memory-enable input. When
the memory enable is 0, all outputs of the decoder are 0 and none of the memory words are se-
lected. With the memory select at 1, one of the four words is selected, dictated by the value in
the two address lines. Once a word has been selected, the read/write input determines the op-
eration. During the read operation, the four bits of the selected word go through OR gates to
the output terminals. (Note that the OR gates are drawn according to the array logic estab-
lished in Fig. 7.1.) During the write operation, the data available in the input lines are trans-
ferred into the four binary cells of the selected word. The binary cells that are not selected are
disabled, and their previous binary values remain unchanged. When the memory select input
that goes into the decoder is equal to 0, none of the words are selected and the contents of all
cells remain unchanged regardless of the value of the read/write input.

Commercial RAMs may have a capacity of thousands of words. and each word may range
from 1 to 64 bits. The logical construction of a large-capacity memory would be a direct ex-
tension of the configuration shown here. A memory with 2* words of # bits per word requires
k address lines that go intoa k X 2* decoder. Each one of the decoder outputs selects one word
of n bits for reading or writing.

Section 7.3 Memory Decoding 293

Input data

} .,
u—hg{‘ —n—
= ;

Address T e R

Memory
enable o

Read/Write

Output data

FIGURE 7.6
Diagram of a 4 X 4 RAM

Coincident Decoding

A decoder with k inputs and 2* outputs requires 2* AND gates with k inputs per gate. The total
number of gates and the number of inputs per gate can be reduced by employing two decoders
in a two-dimensional selection scheme. The basic idea in two-dimensional decoding is to
arrange the memory cells in an array that is close as possible to square. In this configuration,
two k/2-input decoders are used instead of one k-input decoder. One decoder performs the row
selection and the other the column selection in a two-dimensional matrix configuration.

The two-dimensional selection pattern is demonstrated in Fig. 7.7 for a 1K-word memory.
Instead of using a single 10 X 1,024 decoder, we use two 5 X 32 decoders. With the single
decoder, we would need 1,024 AND gates with 10 inputs in each. In the two-decoder case, we
need 64 AND gates with 5 inputs in each. The five most significant bits of the address go to
input X and the five least significant bits go to input ¥. Each word within the memory array is
selected by the coincidence of one X line and one Y line. Thus, each word in memory is selected

294 Chapter 7 Memory and Programmable Logic

7 binary address

01100 10100

X)

m

FIGURE 7.7
Two-dimensional decoding structure for a 1K-word memory

by the coincidence between | of 32 rows and 1 of 32 columns, for a total of 1.024 words. Note
that each intersection represents a word that may have any number of bits.

As an example, consider the word whose address is 404. The 10-bit binary equivalent of 404
is 01100 10100. This makes X = 01100 (binary 12) and ¥ = 10100 (binary 20). The n-bit
word that is selected lies in the X decoder output number 12 and the ¥ decoder output number
20. All the bits of the word are selected for reading or writing.

Address Multiplexing

The SRAM memory cell modeled in Fig. 7.5 typically contains six transistors. In order to build
memories with higher density, it is necessary to reduce the number of transistors in a cell. The
DRAM cell contains a single MOS transistor and a capacitor. The charge stored on the capac-
itor discharges with time, and the memory cells must be periodically recharged by refreshing
the memory. Because of their simple cell structure, DRAMs typically have four times the den-
sity of SRAMs. This allows four times as much memory capacity to be placed on a given size
of chip. The cost per bit of DRAM storage is three to four times less than that of SRAM stor-
age. A further cost savings is realized because of the lower power requirement of DRAM cells.
These advantages make DRAM the preferred technology for large memories in personal dig-
ital computers. DRAM chips are available in capacities from 64K to 256M bits. Most DRAMs
have a 1-bit word size, so several chips have to be combined to produce a larger word size,

Section 7.3 Memory Decoding 295

Because of their large capacity, the address decoding of DRAMs is arranged in a two-
dimensional array, and larger memories often have multiple arrays. To reduce the number of pins
in the IC package. designers utilize address multiplexing whereby one set of address input pins
accommodates the address components. In a two-dimensional array. the address is applied in two
parts at different times, with the row address first and the column address second. Since the same
set of pins is used for both parts of the address. the size of the package is decreased significantly.

We will use a 64K-word memory to illustrate the address-multiplexing idea. A diagram of the
decoding configuration is shown in Fig. 7.8. The memory consists of a two-dimensional array of
cells arranged into 256 rows by 256 columns, for a total of 2° x 2% = 2'® = 64K words. There
is a single data input line, a single data output line, and a read/write control, as well as an eight-bit
address input and two address strobes, the latter included for enabling the row and column address
into their respective registers. The row address strobe (RAS) enables the eight-bit row register, and
the column address strobe (CAS) enables the eight-bit column register. The bar on top of the name
of the strobe symbol indicates that the registers are enabled on the zero level of the signal.

CAS
RAS
ag;it::ss «— Read/Write
Data Data
in out
FIGURE 7.8

Address multiplexing for a 64K DRAM

296

Chapter 7 Memory and Programmable Logic

The 16-bit address is applied to the DRAM in two steps using RAS and CAS. Initially, both
strobes are in the | state. The 8-bit row address is applied to the address inputs and RAS is
changed to 0. This loads the row address into the row address register. RAS also enables the row
decoder so that it can decode the row address and select one row of the array. Afier a time equiv-
alent to the sertling time of the row selection, RAS goes back to the 1 level. The 8-bit column
address is then applied to the address inputs, and CAS is driven to the 0 state. This transfers the
column address into the column register and enables the column decoder. Now the two parts of
the address are in their respective registers, the decoders have decoded them to select the one cell
corresponding to the row and column address, and a read or write operation can be performed on
that cell. CAS must go back to the | level before initiating another memory operation.

7.4 ERROR DETECTION AND CORRECTION

The dynamic physical interaction of the electrical signals affecting the data path of a memory
unit may cause occasional errors in storing and retrieving the binary information. The reliability
of a memory unit may be improved by employing error-detecting and error-correcting codes.
The most common error detection scheme is the parity bit. (See Section 3.9.) A parity bit is gen-
erated and stored along with the data word in memory. The parity of the word is checked after
reading it from memory. The data word is accepted if the parity of the bits read out is correct.
If the parity checked results in an inversion, an error is detected, but it cannot be corrected.

An error-correcting code generates multiple parity check bits that are stored with the data
word in memory. Each check bit is a parity over a group of bits in the data word. When the word
is read back from memory, the associated parity bits are also read from memory and compared
with a new set of check bits generated from the data that have been read. If the check bits are
correct, no error has occurred. If the check bits do not match the stored parity, they generate a
unique pattern. called a syndrome, that can be used to identify the bit that is in error. A single
error occurs when a bit changes in value from 1 to 0 or from 0 to 1 during the write or read op-
eration. If the specific bit in error is identified, then the error can be corrected by comple-
menting the erroneous bit.

Hamming Code

One of the most common error-correcting codes used in RAMs was devised by R. W, Ham-
ming. In the Hamming code, k parity bits are added to an n-bit data word, forming a new word
of n + k bits. The bit positions are numbered in sequence from 1 to n + k. Those positions
numbered as a power of 2 are reserved for the parity bits. The remaining bits are the data bits.
The code can be used with words of any length. Before giving the general characteristics of the
code, we will illustrate its operation with a data word of eight bits.

Consider. for example, the 8-bit data word 11000100. We include 4 parity bits with the
8-bit word and arrange the 12 bits as follows:

Bitposion: 1 2 3 4 5 6 7 8 9 10 11 12
P 1 P 1 0O 0 AR 0 1 0 0

Section 7.4 Error Detection and Correction 297

The 4 parity bits, Py, P, Py, and P, are in positions 1, 2, 4, and 8, respectively. The 8 bits of
the data word are in the remaining positions. Each parity bit is calculated as follows:

P, = XOR of bits (3.5,7,9,11) = 1® 18000 =0
P, = XOR of bits (3,6,7,10,11) = 190005160 = 0
P; = XOR of bits (5,6,7,12) = 190800 =]

P; = XOR of bits (9, 10,11, 12) = 0818060 = 1

Remember that the exclusive-OR operation performs the odd function: It is equal to 1 for an odd
number of 1's in the variables and to 0 for an even number of 1's. Thus, each parity bit is set so
that the total number of 1’s in the checked positions, including the parity bit, is always even.

The 8-bit data word is stored in memory together with the 4 parity bits as a 12-bit compos-
ite word. Substituting the 4 P bits in their proper positions, we obtain the 12-bit composite
word stored in memory:

¢ 0 1T & X0 0 1 &6 1 9 ©
Bitposition: 1 2 3 4 5 6 7 8 9 10 11 12

When the 12 bits are read from memory, they are checked again for errors. The parity is checked
over the same combination of bits, including the parity bit. The 4 check bits are evaluated as
follows:

C, = XOR of bits (1,3,5,7,9, 11)

C; = XOR of bits (2,3,6,7,10,11)

Cy = XOR of bits (4,5,6,7, 12)

Cg = XOR of bits (8,9, 10, 11, 12)

A 0 check bit designates even parity over the checked bits and a 1 designates odd parity. Since
the bits were stored with even parity, the result, C = CygC4C>C, = 0000, indicates that no error
has occurred. However, if C # 0, then the 4-bit binary number formed by the check bits gives
the position of the erroneous bit. For example, consider the following three cases:

Bit position: 2 3 4 5 6 7 8 9 10 11 12

I

0o 0 1 1 1 0 0 1 0 1 0 0 Noerror

1 0 1 1 1 0 0 1 0 1 0 O Ermorinbitl
0O 0 1 1 0 0 0 1 0 1 0 0 Erorinbit5

In the first case, there is no error in the 12-bit word. In the second case, there is an error in bit
position number 1 because it changed from 0 to 1. The third case shows an error in bt posi-
tion 5, with a change from 1 to 0. Evaluating the XOR of the corresponding bits, we determine
the 4 check bits to be as follows:

Cyg Ci (i C,
For no error: 0o 0o 0 0
With error in bit 1: 0O 0 0 |
With error in bit 5: 0 | 0 1

298

Chapter 7 Memory and Programmable Logic

Thus, for no error, we have C = 0000; with an error in bit 1, we obtain C = 0001: and with
an error in bit 5, we get C = 0101. When the binary number C is not equal to 0000. it gives
the position of the bit in error. The error can be corrected by complementing the corresponding
bit. Note that an error can occur in the data word or in one of the parity bits.

The Hamming code can be used for data words of any length. In general. the Hamming code
consists of & check bits and n data bits, for a total of n + k bits. The syndrome value C consists
of k bits and has a range of 2* values between 0 and 2* — 1. One of these values, usually zero,
is used to indicate that no error was detected, leaving 2* — 1 values to indicate which of the
n + k bits was in error, Each of these 2¢ — 1 values can be used to uniquely describe a bit in
error. Therefore, the range of & must be equal to or greater than n + k, giving the relationship

2 —1=n+k
Solving for n in terms of &, we obtain
¥ -1=—k=n

This relationship gives a formula for establishing the number of data bits that can be used in
conjunction with & check bits. For example, when & = 3, the number of data bits that can be
usedisn = (2 — | — 3) = 4. Fork = 4, wehave 2* — 1 — 4 = 11, givingn = 11. The
data word may be less than 11 bits, but must have at least 5 bits; otherwise, only 3 check bits
will be needed. This justifies the use of 4 check bits for the 8 data bits in the previous exam-
ple. Ranges of n for various values of k are listed in Table 7.2.

The grouping of bits for parity generation and checking can be determined from a list of the
binary numbers from 0 through 2% — 1. The least significant bit is a 1 in the binary numbers 1, 3,
5,7, and so on. The second significant bit is a 1 in the binary numbers 2. 3. 6. 7, and so on. Com-
paring these numbers with the bit positions used in generating and checking parity bits in the Ham-
ming code. we note the relationship between the bit groupings in the code and the position of the
I-bits in the binary count sequence. Note that each group of bits starts with a number that is &
power of 2: 1, 2,4, 8, 16, etc. These numbers are also the position numbers for the parity bits.

Single-Error Correction, Double-Error Detection

The Hamming code can detect and correct only a single error. By adding another parity bit to
the coded word, the Hamming code can be used to correct a single error and detect double
errors. If we include this additional parity bit, then the previous 12-bit coded word becomes
001110010100P,5, where Py is evaluated from the exclusive-OR of the other 12 bits. This

Table 7.2
Range of Data Bits for k Check Bits

Number of Check Bits, k Range of Data Bits, n

24
5-11
12-26
27-57
58-120

e = R R

Section 7.5 Read-Only Memory 299

produces the 13-bit word 0011100101001 (even parity). When the 13-bit word is read from
memory, the check bits are evaluated, as is the parity P over the entire 13 bits, If P = 0, the
parity is correct (even parity), but if P = 1, then the parity over the 13 bits is incorrect (odd
parity). The following four cases can arise:

If C = 0and P = 0, no error occurred.

If C # 0and P = 1, a single error occurred that can be corrected.

If C # Oand P = (), adouble error occurred that is detected, but that cannot be corrected.
If C = 0and P = 1, an error occurred in the P, bit.

This scheme may detect more than two errors, but is not guaranteed to detect all such errors.

Integrated circuits use a modified Hamming code to generate and check parity bits for
single-error correction and double-error detection. The modified Hamming code uses a
more efficient parity configuration that balances the number of bits used to calculate the
XOR operation. A typical integrated circuit that uses an 8-bit data word and a 5-bit check
word is IC type 74637. Other integrated circuits are available for data words of 16 and 32
bits, These circuits can be used in conjunction with a memory unit to correct a single error
or detect double errors during write and read operations.

7.5 READ-ONLY MEMORY

A ROM is essentially a memory device in which permanent binary information is stored. The
binary information must be specified by the designer and is then embedded in the unit to form
the required interconnection pattern. Once the pattern is established, it stays within the unit even
when power is turned off and on again.

A block diagram of a ROM consisting of k inputs and n outputs is shown in Fig, 7.9. The in-
puts provide the address for memory, and the outputs give the data bits of the stored word that is
selected by the address. The number of words in a ROM is determined from the fact that k address
input lines are needed to specify 2* words. Note that ROM does not have data inputs, because it
does not have a write operation, Integrated circuit ROM chips have one or more enable inputs and
sometimes come with three-state outputs to facilitate the construction of large arrays of ROM.

Consider, for example, a 32 X 8 ROM. The unit consists of 32 words of 8 bits each. There
are five input lines that form the binary numbers from 0 through 31 for the address. Figure 7.10
shows the internal logic construction of this ROM. The five inputs are decoded into 32 distinct
outputs by means of a 5 X 32 decoder. Each output of the decoder represents a memory address.

k inputs (address) — +—>n outputs (data)

FIGURE 7.9
ROM block diagram

300

Chapter 7 Memory and Programmable Logic

FIGURE 7.10
Internal logic of a 32 X 8 ROM

The 32 outputs of the decoder are connected to each of the eight OR gates. The diagram shows
the array logic convention used in complex circuits. (See Fig. 6.1.) Each OR gate must be con-
sidered as having 32 inputs. Each output of the decoder is connected to one of the inputs of each
OR gate, Since each OR gate has 32 input connections and there are 8 OR gates, the ROM con-
tains 32 X 8 = 256 internal connections. In general, a 2¥ X n ROM will have an internal
k % 2¥ decoder and n OR gates. Each OR gate has 2¥ inputs, which are connected to each of
the outputs of the decoder.

The 256 intersections in Fig. 7.10 are programmable. A programmable connection between
two lines is logically equivalent to a switch that can be altered to be either closed (meaning that
the two lines are connected) or open (meaning that the two lines are disconnected). The pro-
grammable intersection between two lines is sometimes called a crosspoint. Various physical
devices are used to implement crosspoint switches. One of the simplest technologies employs
a fuse that normally connects the two points, but is opened or “blown™ by the application of
a high-voltage pulse into the fuse.

The internal binary storage of a ROM is specified by a truth table that shows the word con-
tent in each address. For example, the content of a 32 X 8 ROM may be specified with a truth
table similar to the one shown in Table 7.3, The truth table shows the five inputs under which
are listed all 32 addresses. Each address stores a word of 8 bits, which is listed in the outputs
columns. The table shows only the first four and the last four words in the ROM. The complete
table must include the list of all 32 words.

The hardware procedure that programs the ROM blows fuse links in accordance with a
given truth table. For example, programming the ROM according to the truth table given by
Table 7.3 results in the configuration shown in Fig. 7.11. Every 0 listed in the truth table

Section 7.5 Read-Only Memory 301

Table 7.3
ROM Truth Table (Partial)
inputs Outputs

Is I L L I A; A As Ay A A A A
0 0 0 0 0 1 0 1 1 0 1 1 0
o 0o 0 0 1 0 0 0 1 1 1 0 1
0O 0 0 1 0 1 1 0 0 0 1 0 1
o o0 0 1 1 | 0 1 1 0 0 1 0
1 1 | 0O 0 0 0 0 0 1 0 0 1
| 1 1 0o 1 1 | 1 0 0 0 1 0
1 1 l 1 0 0 1 0 0 | 0 1 0
1 1 I | 1 0 0 1 1 0 0 1 1

N & N3 |
S 1 i
Iy I
I —— L. *
I — VSRS
. - decader .7
I R ¥
30 ¥
3
A5 A_] A_\ A: A] Aﬂ
FIGURE 7.11

Programming the ROM according to Table 7.3

specifies the absence of a connection, and every 1 listed specifies a path that is obtained by a
connection. For example, the table specifies the eight-bit word 10110010 for permanent stor-
age at address 3. The four 0's in the word are programmed by blowing the fuse links between
output 3 of the decoder and the inputs of the OR gates associated with outputs Ag. Aa, Ay, and
Ag. The four 1's in the word are marked witha X to denote a temporary connection, in place
of a dot used for a permanent connection in logic diagrams. When the input of the ROM is
00011, all the outputs of the decoder are 0 except for output 3, which is at logic 1. The signal

302 Chapter 7 Memory and Programmable Logic

equivalent to logic | at decoder output 3 propagates through the connections to the OR gate out-
puts of A5, As. Ay, and A . The other four outputs remain at 0. The result is that the stored word
10110010 is applied to the eight data outputs.

Combinational Circuit Implementation

In Section 4.9. it was shown that a decoder generates the 2 minterms of the k input variables.
By inserting OR gates to sum the minterms of Boolean functions, we were able to generate any
desired combinational circuit. The ROM is essentially a device that includes both the decoder
and the OR gates within a single device to form a minterm generator. By choosing connections
for those minterms which are included in the function, the ROM outputs can be programmed
to represent the Boolean functions of the output variables in a combinational circuit.

The internal operation of a ROM can be interpreted in two ways. The first interpretation is that
of a memory unit that contains a fixed pattern of stored words. The second interpretation is that of
a unit which implements a combinational circuit. From this point of view, each output terminal is
considered separately as the output of a Boolean function expressed as a sum of minterms. For
example, the ROM of Fig. 7.11 may be considered to be a combinational circuit with eight outputs,
each a function of the five input variables. Output A4 can be expressed in sum of minterms as

A';(Iq,. 13., fz. II-]0) = 2(0, Zi B 29)

(The three dots represent minterms 4 through 27, which are not specified in the figure,) A con-
nection marked with X in the figure produces a minterm for the sum. All other crosspoints
are not connected and are not included in the sum,

In practice, when a combinational circuit is designed by means of a ROM. it is not neces-
sary to design the logic or to show the internal gate connections inside the unit. All that the de-
signer has to do is specify the particular ROM by its IC number and provide the applicable truth
table. The truth table gives all the information for programming the ROM. No internal logic
diagram is needed to accompany the truth table.

EXAMPLE 7.1

Design a combinational circuit using a ROM. The circuit accepts a three-bit number and out-
puts a binary number equal to the square of the input number.

The first step is to derive the truth table of the combinational circuit. In most cases. this is
all that is needed. In other cases, we can use a partial truth table for the ROM by utilizing cer-
tain properties in the output variables. Table 7.4 is the truth table for the combinational circuit.
Three inputs and six outputs are needed to accommodate all possible binary numbers. We note
that output By is always equal to input Ag, so there is no need to generate By with a ROM,
since it is equal to an input variable. Moreover, output B, is always 0, so this output is a known
constant, We actually need 1o generate only four outputs with the ROM; the other two are read-
ily obtained. The minimum size of ROM needed must have three inputs and four outputs. Three
inputs specify eight words, so the ROM must be of size 8 X 4. The ROM implementation is
shown in Fig. 7.12. The three inputs specify eight words of four bits each. The truth table in
Fig. 7.12(b) specifies the information needed for programming the ROM. The block diagram

Section 7.5 Read-Only Memory 303

Table 7.4
Truth Table for Circuit of Example 7.1
Inputs Outputs
Ay Ay A Bs By By By By By Decimal
0 0 0 0 0 0 0 () 0 0
0 0 1 0 0 0 0 0 1 1
0] 0 0 0 0 1 0 0 4
0 1 | 0 0 1 0 0] 9
1 0 0 0 | 0 0 0 0 16
1 0 | 0 | 1 0 0 1 25
1 1 0 1 0 0 1 0o 0 36
1 1 | 1 | 0 0 0 1 49
By Ay Ay Ag Bs By By By
0— B 00 0jl0 0 0 0
B 0O 0 110 0 0 O
A < 0 1 0[O0 0 0 1
o B 01 1/0 0 1 0
e ARON : 1 @ fgl0 1t 0 0O
o 5 4‘.13%-'{-. B, 1 0 1/0 1 1 0
Az A R 1 1 011 @ 0 1
/ B Bs s (T | 1 1 0 0
(a) Block diagram (b) ROM truth table
FIGURE 7.12

ROM implementation of Example 7.1

of Fig. 7.12(a) shows the required connections of the combinational circuit.

Types of ROMs

The required paths in a ROM may be programmed in four different ways. The first is called mask
programming and is done by the semiconductor company during the last fabrication process of
the unit. The procedure for fabricating a ROM requires that the customer fill out the truth table
he or she wishes the ROM to satisfy. The truth table may be submitted in a special form pro-
vided by the manufacturer or in a specified format on a computer output medium. The manu-
facturer makes the corresponding mask for the paths to produce the 1’s and (s according to the
customer's truth table. This procedure is costly because the vendor charges the customer a spe-
cial fee for custom masking the particular ROM. For this reason, mask programming is eco-
nomical only if a large quantity of the same ROM configuration is to be ordered.

For small quantities, it is more economical to use a second type of ROM called
programmable read-only memory, or PROM. When ordered, PROM units contain all the fuses
intact, giving all 1's in the bits of the stored words. The fuses in the PROM are blown by the

304 Chapter 7 Memory and Programmable Logic

application of a high-voltage pulse to the device through a special pin. A blown fuse defines a bi-
nary 0 state and an intact fuse gives a binary |1 state. This procedure allows the user to program
the PROM in the laboratory to achieve the desired relationship between input addresses and
stored words. Special instruments called PROM programmers are available commercially to fa-
cilitate the procedure. In any case, all procedures for programming ROMs are hardware proce-
dures, even though the word programming is used.

The hardware procedure for programming ROMs or PROMs is irreversible. and once pro-
grammed, the fixed pattern is permanent and cannot be altered. Once a bit patiern has been es-
tablished, the unit must be discarded if the bit pattern is to be changed. A third type of ROM
is the erasable PROM, or EPROM, which can be restructured to the initial state even though
it has been programmed previously. When the EPROM is placed under a special ultraviolet light
for a given length of time, the shortwave radiation discharges the internal floating gates that
serve as the programmed connections. After erasure, the EPROM returns to its initial state and
can be reprogrammed to a new set of values.

The fourth type of ROM is the electrically erasable PROM (EEPROM or E*PROM). This
device is like the EPROM, except that the previously programmed connections can be erased
with an electrical signal instead of ultraviolet light. The advantage is that the device can be
erased without removing it from its socket.

Flash memory devices are similar to EEPROMs, but have additional built-in circuitry to
selectively program and erase the device in-circuit, without the need for a special programmer.
They have widespread application in modern technology in cell phones, digital cameras. set-
top boxes, digital TV, telecommunications, nonvolatile data storage. and microcontrollers.
Their low consumption of power makes them an attractive storage medium for laptop and note-
book computers. Flash memories incorporate additional circuitry, too, allowing simultaneous
erasing of blocks of memory, for example, of size 16 Kbytes to 64 Kbytes. Like EEPROMs,
flash memories are subject to fatigue, typically having about 10° block erase cycles.

Combinational PLDs

The PROM is a combinational programmable logic device (PLD)—an integrated circuit with
programmable gates divided into an AND array and an OR array to provide an AND-OR sum-
of-product implementation. There are three major types of combinational PLDs, differing in
the placement of the programmable connections in the AND-OR array. Figure 7.13 shows the
configuration of the three PLDs. The PROM has a fixed AND array constructed as a decoder
and a programmable OR array. The programmable OR gates implement the Boolean functions
in sum-of-minterms form. The PAL has a programmable AND array and a fixed OR array. The
AND gates are programmed to provide the product terms for the Boolean functions, which are
logically summed in each OR gate. The most flexible PLD is the PLA, in which both the AND
and OR arrays can be programmed. The product terms in the AND array may be shared by any
OR gate to provide the required sum-of-products implementation. The names PAL and PLA
emerged from different vendors during the development of PL.Ds. The implementation of com-
binational circuits with PROM was demonstrated in this section. The design of combinational
circuits with PLA and PAL is presented in the next two sections.

Section 7.6 Programmable Logic Array 305

Inputs ————» “AND array

Geode)

{a) Programmable read-only memory (PROM})

- ANDaray

Inputs —————

——> Outpuis

(b) Programmable array logic (PAL)

pmgrammab]e i

Inputs ———> —— Outputs

(c) Programmable logic array (PLA)

FIGURE 7.13
Basic configuration of three PLDs

7.6 PROGRAMMABLE LOGIC ARRAY

The PLA is similar in concept to the PROM, except that the PLA does not provide full decod-
ing of the variables and does not generate all the minterms. The decoder is replaced by an array
of AND gates that can be programmed to generate any product term of the input variables.
The product terms are then connected to OR gates to provide the sum of products for the re-
quired Boolean functions.

The internal logic of a PLA with three inputs and two outputs is shown in Fig. 7.14. Such a
circuit is too small to be useful commercially, but is presented here to demonstrate the typical
logic configuration of a PLA. The diagram uses the array logic graphic symbols for complex cir-
cuits. Each input goes through a buffer-inverter combination, shown in the diagram with a com-
posite graphic symbol, that has both the true and complement outputs. Each input and its
complement are connected to the inputs of each AND gate, as indicated by the intersections be-
tween the vertical and horizontal lines. The outputs of the AND gates are connected to the in-
puts of each OR gate. The output of the OR gate goes to an XOR gate, where the other input
can be programmed to receive a signal equal to either logic 1 or logic 0. The output is inverted
when the XOR input is connected to 1 (since x & 1 = x’). The output does not change when
the XOR input is connected to 0 (since x @0 = x). The particular Boolean functions imple-
mented in the PLA of Fig. 7.14 are

F, = AB' + AC + A'BC’
B = (AC + BC)'

306 Chapter 7 Memory and Programmable Logic

p—F
c—F
H— l AB’
— e W » £ AC
T *—— A'BC’
CCBBAA R A
1
AT Fis
>—n
oo
FIGURE 7.14

PLA with three inputs, four product terms, and two outputs

The product terms generated in each AND gate are listed along the output of the gate in the
diagram. The product term is determined from the inputs whose crosspoints are connected and
marked with a X. The output of an OR gate gives the logical sum of the selected product terms,
The output may be complemented or left in its true form, depending on the logic being realized.

The fuse map of a PLA can be specified in a tabular form. For example. the programming
table that specifies the PLA of Fig. 7.14 is listed in Table 7.5. The PLA programming table con-
sists of three sections. The first section lists the product terms numerically. The second section
specifies the required paths between inputs and AND gates. The third section specifies the
paths between the AND and OR gates. For each output variable, we may have a T (for true) or
C (for complement) for programming the XOR gate. The product terms listed on the left are
not part of the table; they are included for reference only. For each product term. the inputs are
marked with 1, 0, or — (dash). If a variable in the product term appears in the form in which
it is true, the corresponding input variable is marked with a 1. If it appears complemented. the
corresponding input variable is marked with a 0. If the variable is absent from the product
term, it is marked with a dash.

Section 7.6 Programmable Logic Array 307

Table 7.5
PLA Programming Table
Outputs
Inputs (M ()
Product Term A B C F, F;
AB' 1 0 — 1 —
AC 2 I — 1 1 1
BC 3 — 1 1 — 1
A'BC' 4 0 i 0 I —

Note: See text for meanings of dashes.

The paths between the inputs and the AND gates are specified under the column head “In-
puts” in the programming table. A 1 in the input column specifies a connection from the input
variable to the AND gate. A 0 in the input column specifies a connection from the comple-
ment of the variable to the input of the AND gate. A dash specifies a blown fuse in both the
input variable and its complement. It is assumed that an open terminal in the input of an AND
gate behaves like a 1.

The paths between the AND and OR gates are specified under the column head “Outputs.”
The output variables are marked with 1's for those product terms which are included in the func-
tion, Each product term that has a 1 in the output column requires a path from the output of the
AND gate to the input of the OR gate. Those marked with a dash specify a blown fuse. It is as-
sumed that an open terminal in the input of an OR gate behaves like a 0. Finally, a T (true) out-
put dictates that the other input of the corresponding XOR gate be connected to 0, and a C
(complement) specifies a connection to 1.

The size of a PLA is specified by the number of inputs. the number of product terms, and
the number of outputs. A typical integrated circuit PLA may have 16 inputs, 48 product terms,
and eight outputs. For n inputs, & product terms, and m outputs, the internal logic of the PLA
consists of n buffer-inverter gates, k AND gates, m OR gates, and m XOR gates. There are
2n X k connections between the inputs and the AND array, k£ X m connections between the
AND and OR arrays, and m connections associated with the XOR gates.

In designing a digital system with a PLA, there is no need to show the internal connections
of the unit as was done in Fig. 7.14. All that is needed is a PLA programming table from which
the PLA can be programmed to supply the required logic. As with a ROM, the PLA may be mask
programmable or field programmable, With mask programming, the customer submits a PLA
program table to the manufacturer. This table is used by the vendor to produce a custom-made
PLA that has the required internal logic specified by the customer. A second type of PLA that
is available is the field-programmable logic array, or FPLA, which can be programmed by the
user by means of a commercial hardware programmer unit.

In implementing a combinational circuit with a PLA, careful investigation must be under-
taken in order to reduce the number of distinct product terms, since a PLA has a finite number
of AND gates. This can be done by simplifying each Boolean function to a minimum number
of terms. The number of literals in a term is not important, since all the input variables are

308 Chapter 7 Memory and Programmable Logic

EXAMPLE 7.2

available anyway. Both the true value and the complement of each function should be simpli-
fied to see which one can be expressed with fewer product terms and which one provides prod-
uct terms that are common to other functions.

Implement the following two Boolean functions with a PLA:
Fi(A, B,C) = 2(0,1,2,4)

FZ(At Br C) = E(O' 5,6, ?)
The two functions are simplified in the maps of Fig. 7.15. Both the true value and the com-
plement of the functions are simplified into sum-of-products form. The combination that gives
the minimum number of product terms is

Fy = (AB + AC + BC)’
and

F, = AB + AC + A'B'C'
This combination gives four distinct product terms: AB, AC, BC, and A'B'C’". The PLA pro-
gramming table for the combination is shown in the figure. Note that output F; is the true out-
put, even though a C is marked over it in the table. This is because F, is generated with an

AND-OR circuit and is available at the output of the OR gate. The XOR gate complements the
function to produce the true F; output.

PLA programming table BC i BC —
Outputs 00 01 11 10 A 00 01 11 10
Biodinct Inpugs (C) (T) 8 ﬂlgl mll rﬂ;o m 4 § Mul L 3 m. 0 . "
. ABC B B
AB 1 11 11 Mo [me [[e R
- A A 0
4 2 2 3 = : : 1] 1 0 0 0 1 1 1 1
BC 3 = . 4 1 - —_— —
A'BC 4 000 - 1 c c
FIGURE 7.15

Solution to Example 7.2
|

The combinational circuit used in Example 7.2 is too simple for implementing with a PLA.
It was presented merely for purposes of illustration. A typical PLA has a large number of inputs
and product terms, The simplification of Boolean functions with so many variables should be
carried out by means of computer-assisted simplification procedures. The computer-aided design
program simplifies each function and its complement to a minimum number of terms. The pro-
gram then selects a minimum number of product terms that cover all functions in the form in
which they are true or in their complemented form. The PLA programming table is then gener-
ated and the required fuse map obtained. The fuse map is applied to an FPLA programmer that
goes through the hardware procedure of blowing the internal fuses in the integrated circuit.

Section 7.7 Programmable Array Logic 309

7.7 PROGRAMMABLE ARRAY LOGIC

The PAL is a programmable logic device with a fixed OR array and a programmable AND array.
Because only the AND gates are programmable, the PAL is easier to program than, but is not
as flexible as, the PLA. Figure 7.16 shows the logic configuration of a typical PAL with four in-
puts and four outputs. Each input has a buffer-inverter gate, and each output is generated by a
fixed OR gate. There are four sections in the unit, each composed of an AND-OR array that is
three wide, the term used to indicate that there are three programmable AND gates in each sec-
tion and one fixed OR gate. Each AND gate has 10 programmable input connections, shown in
the diagram by 10 vertical lines intersecting each horizontal line. The horizontal line symbol-
izes the multiple-input configuration of the AND gate. One of the outputs is connected to a
buffer-inverter gate and then fed back into two inputs of the AND gates.

Commercial PAL devices contain more gates than the one shown in Fig. 7.16. A typical PAL
integrated circuit may have eight inputs, eight outputs. and eight sections, each consisting of an
eight-wide AND-OR array. The output terminals are sometimes driven by three-state bufters or
inverters.

In designing with a PAL, the Boolean functions must be simplified to fit into each section.
Unlike the situation with a PLA, a product term cannot be shared among two or more OR gates.
Therefore, each function can be simplified by itself, without regard to common product terms.
The number of product terms in each section is fixed, and if the number of terms in the func-
tion is too large, it may be necessary to use two sections to implement one Boolean function.

As an example of using a PAL in the design of a combinational circuit, consider the following
Boolean functions, given in sum-of-minterms form:

w(A, B,C, D) = 2(2, 12, 13)

x(A.B.C, D) = 3(7.8,9,10, 11, 12, 13, 14, 15)
¥(A.B,C.D) = £(0,2,3,4,5,6,7,8.10, 11, 15)
2(A,B.C,D) = 3(1,2,8,12,13)

Simplifying the four functions to a minimum number of terms results in the following Boolean

functions:

ABC' + A'R'CD'

A+ BCD

= A'B+ CD + B'D'

ABC' + A'B'CD’ + AC'D' + A'B'C'D

w+ AC'D' + A'B'C'D

Note that the function for z has four product terms. The logical sum of two of these terms is

equal to w. By using w, it is possible to reduce the number of terms for z from four to three.
The PAL programming table is similar to the one used for the PLA, except that only the in-

puts of the AND gates need to be programmed. Table 7.6 lists the PAL programming table for
the four Boolean functions, The table is divided into four sections with three product terms in

w

-
]

Y

M

]

310 Chapter 7 Memory and Programmable Logic

AND gates inputs

Product 1. 2 3 4 5 6 7 8 9 10
term — |

1

2

3—
’:-[5

4

5

6
3

7

B

9

10

11

12
w1

1 2 3 4 5 6 7 8 9 10

FIGURE 7.16

PAL with four inputs, four outputs, and a three-wide AND-OR structure

Section 7.8 Sequential Programmable Devices 31

Table 7.6
PAL Programming Table
AND Inputs
Product Term A B C D w Outputs

1 1 1 0 — — w= ABC' + A'B'CD’
z o 0 1 0 -
3 S —
- l — = = = x=A+ BCD
5 — 1 1 -
6 — w— am aoe i
7 0 1 — — — y=A'B+ CD+ B'D’
8 —_ - 1 —
9 - 0 - 0 -
10 _ - = = 1 z=w+ AC'D' + A'B'C'D
11 1 — 0 0 -
12 0o 0 0 1 —

each, to conform with the PAL of Fig. 7.16. The first two sections need only two product terms
to implement the Boolean function. The last section, for output z, needs four product terms.
Using the output from w, we can reduce the function to three terms.

The fuse map for the PAL as specified in the programming table is shown in Fig. 7.17. For
each 1 or 0 in the table, we mark the corresponding intersection in the diagram with the sym-
bol for an intact fuse. For each dash, we mark the diagram with blown fuses in both the true
and complement inputs. If the AND gate is not used, we leave all its input fuses intact. Since
the corresponding input receives both the true value and the complement of each input vari-
able, we have AA’" = 0 and the output of the AND gate is always 0.

As with all PLDs, the design with PALs is facilitated by using computer-aided design tech-
niques. The blowing of internal fuses is a hardware procedure done with the help of special elec-
tronic instruments,

7.8 SEQUENTIAL PROGRAMMARBLE DEVICES

Digital systems are designed with flip-flops and gates. Since the combinational PLD consists
of only gates, it is necessary to include external flip-flops when they are used in the design. Se-
quential programmable devices include both gates and flip-flops. In this way, the device can
be programmed to perform a variety of sequential-circuit functions. There are several types of
sequential programmable devices available commercially, and each device has vendor-specific
variants within each type. The internal logic of these devices is too complex to be shown here.
Therefore, we will describe three major types without going into their detailed construction:

1. Sequential (or simple) programmable logic device (SPLD)

2. Complex programmable logic device (CPLD)
3. Field-programmable gate array (FPGA)

312 Chapter 7 Memory and Programmable Logic

AND gates inputs
Product A A B B CC DD ww
term _l
L =X * *
2 £ 3 3 L W
3
x r,
4 —x
5 A * ¥ X
6
M~ All fuses intact
B :v} (always = 0)

D —i} % Fuse intact

+ Fuse blown

A A B B CC DD ww

FIGURE 7.17
Fuse map for PAL as specified in Table 7.6

Section 7.8 Sequential Programmable Devices 313

Inputs S R -
AND-OR-array
(PAL or PLA)

1 Ourputs
- Hip-flops >

¥

FIGURE 7.18
Sequential programmable logic device

The sequential PLD is sometimes referred to as a simple PLD to differentiate it from the com-
plex PLD. The SPLD includes flip-flops, in addition to the AND-OR array, within the integrated
circuit chip. The result is a sequential circuit as shown in Fig. 7.18. A PAL or PLA is modified
by including a number of flip-flops connected to form a register. The circuit outputs can be taken
from the OR gates or from the outputs of the flip-flops. Additional programmable connections
are available to include the flip-flop outputs in the product terms formed with the AND array,
The flip-flops may be of the D or the JK type.

The first programmable device developed to support sequential circuit implementation is
the field-programmable logic sequencer (FPLS). A typical FPLS is organized around a PLA
with several outputs driving flip-flops. The flip-flops are flexible in that they can be pro-
grammed to operate as either the JK or the D type. The FPLS did not succeed commercially,
because it has too many programmable connections. The configuration mostly used in an
SPLD is the combinational PAL together with D flip-flops. A PAL that includes flip-flops is
referred to as a registered PAL, to signify that the device contains flip-flops in addition to the
AND-OR array. Each section of an SPLD is called a macrocell, which is a circuit that contains
a sum-of-products combinational logic function and an optional flip-flop. We will assume an
AND-OR sum-of-products function, but in practice, it can be any one of the two-level im-
plementations presented in Section 3.7,

Figure 7.19 shows the logic of a basic macrocell. The AND-OR array is the same as in the
combinational PAL shown in Fig. 7.16. The output is driven by an edge-triggered D flip-flop
connected to a common clock input and changes state on a clock edge. The output of the flip-
flop is connected 1o a three-state buffer (or inverter) controlled by an output-enable signal
marked in the diagram as OE. The output of the flip-flop is fed back into one of the inputs of
the programmable AND gates to provide the present-state condition for the sequential circuit.
A typical SPLD has from 8 to 10 macrocells within one IC package. All the flip-flops are con-
nected to the common CLK input, and all three-state buffers are controlled by the OE input.

In addition to programming the AND array. a macrocell may have other programming features.
Typical programming options include the ability to either use or bypass the flip-flop, the selection
of clock edge polarity, the selection of preset and clear for the register, and the selection of the true
value or complement of an output. An XOR gate is used to program a true/complement condition.
Multiplexers select between two or four distinct paths by programming the selection inputs.

The design of a digital system using PLDs often requires the connection of several devices
to produce the complete specification. For this type of application, it is more economical to use
a complex programmable logic device (CPLD), which is a collection of individual PLDs on a
single integrated circuit. A programmable interconnection structure allows the PLDs to be con-
nected to each other in the same way that can be done with individual PLDs.

314 Chapter 7 Memory and Programmable Logic

CLK OE

—&]
—

FIGURE 7.19
Basic macrocell logic

FIGURE 7.20
General CPLD configuration

Figure 7.20 shows the general configuration of a CPLD. The device consists of multiple
PLDs interconnected through a programmable switch matrix. The input—output (1/0) blocks pro-
vide the connections to the IC pins. Each I/O pin is driven by a three-state buffer and can be
programmed to act as input or output. The switch matrix receives inputs from the I/O block and

Section 7.8 Sequential Programmable Devices 315

directs them to the individual macrocells. Similarly, selected outputs from macrocells are sent
to the outputs as needed. Each PLD typically contains from 8 to 16 macrocells, usually fully
connected. If a macrocell has unused product terms, they can be used by other nearby macro-
cells. In some cases the macrocell flip-flop is programmed to act as a D, JK, or T flip-flop.

Different manufacturers have taken different approaches to the general architecture of CPLDs.
Areas in which they differ include the individual PLDs (sometimes called function blocks), the
type of macrocells, the I/O blocks, and the programmable interconnection structure. The best way
to investigate a vendor-specific device is to look at the manufacturer’s literature.

The basic component used in VLSI design is the gare array, which consists of a pattern of
gates, fabricated in an area of silicon, that is repeated thousands of times until the entire chip is cov-
ered with gates. Arrays of one thousand to several hundred thousand gates are fabricated within a
single IC chip, depending on the technology used. The design with gate arrays requires that the cus-
tomer provide the manufacturer the desired interconnection pattern. The first few levels of the fab-
rication process are common and independent of the final logic function. Additional fabrication steps
are required to interconnect the gates according to the specifications given by the designer.

A field-programmable gate array (FPGA) is a VLSI circuit that can be programmed at the
user's location. A typical FPGA consists of an array of hundreds or thousands of logic blocks,
surrounded by programmable input and output blocks and connected together via program-
mable interconnections. There is a wide variety of internal configurations within this group of
devices. The performance of each type of device depends on the circuit contained in its logic
blocks and the efficiency of its programmed interconnections.

A typical FPGA logic block consists of lookup tables, multiplexers, gates, and flip-flops. A
lookup table is a truth table stored in an SRAM and provides the combinational circuit functions
for the logic block. These functions are realized from the lookup table, in the same way that com-
binational circuit functions are implemented with ROM, as described in Section 7.5. For exam-
ple,a 16 X 2 SRAM can store the truth table of a combinational circuit that has four inputs and
two outputs, The combinational logic section, along with a number of programmable multiplex-
ers, is used to configure the input equations for the flip-flop and the output of the logic block.

The advantage of using RAM instead of ROM to store the truth table is that the table can
be programmed by writing into memory. The disadvantage is that the memory is volatile and
presents the need for the lookup table's content to be reloaded in the event that power is dis-
rupted. The program can be downloaded either from a host computer or from an onboard
PROM. The program remains in SRAM until the FPGA is reprogrammed or the power is turned
off. The device must be reprogrammed every time power is turned on. The ability to reprogram
the FPGA can serve a variety of applications by using different logic implementations in the
program.

The design with PLD, CPLD. or FPGA requires extensive computer-aided design (CAD)
tools to facilitate the synthesis procedure. Among the tools that are available are schematic
entry packages and hardware description languages (HDLs), such as ABEL, VHDL, and Ver-
ilog. Synthesis tools are available that allocate, configure, and connect logic blocks to match
a high-level design description written in HDL, As an example of CMOS FPGA technology,
we will discuss the Xilinx FPGA.'

' See www.Altera.com for an alternative CMOS FPGA architecture.

316 Chapter 7 Memory and Programmable Logic

Xilinx FPGAs

Xilinx launched the world's first commercial FPGA in 1985, with the vintage XC2000 device
family.” The XC3000 and XC4000 families soon followed, setting the stage for today’s Spar-
tan™, and Virtex™ device families. Each evolution of devices brought improvements in den-
sity, performance. power consumption, voltage levels, pin counts. and functionality. For
example, the Spartan family of devices initially offered a maximum of 40K system gates. but
today's Spartan-3E offers 1.6M gates plus block RAM.

Basic Xilinx Architecture

The basic architecture of Spartan and earlier device families consists of an array of config-
urable logic blocks (CLBs), a variety of local and global routing resources, and input—output
(1/0) blocks (10Bs). programmable I/O buffers, and a SRAM-based configuration memory. as
shown in Fig. 7.21.

\ Vertical

long line

- Switch | a - Switch Switch |
Horizontal
long line

FIGURE 7.21
Basic architecture of Xilinx Spartan and predecessor devices

*See www.Xilinx.com for up-to-date information about Xilinx products.

Section 7.8 Sequential Programmable Devices 317

Configurable Logic Block (CLB)

Each CLB consists of a programmable lookup table, multiplexers, registers, and paths for con-
trol signals, as shown in Fig. 7.22. Two of the function generators (F and G) of the lookup
table can generate any arbitrary function of four inputs, and the third (H) can generate any
Boolean function of three inputs. The H-function block can get its inputs from the F and G
lookup tables or from external inputs. The three function generators can be programmed 1o
generate (1) three different functions of three independent sets of variables (two with four in-
puts and one with three inputs—one function must be registered within the CLB), (2) an arbi-
trary function of five variables, (3) an arbitrary function of four variables together with some
functions of six variables, and (4) some functions of nine variables.

Each CLB has two storage devices that can be configured as edge-triggered flip-flops with
a common clock, or, in the XC4000X, they can be configured as flip-flops or as transparent
latches with a common clock (programmed for either edge and separately invertible) and an
enable. The storage elements can get their inputs from the function generators or from the D,
input. The other element can get an external input from the H/ input, The function generators
can also drive two outputs (X and Y) directly and independently of the outputs of the storage
elements. All of these outputs can be connected to the interconnect network. The storage ele-
ments are driven by a global set/reset during power-up: the global set/reset is programmed to
match the programming of the local S/R control for a given storage element.

Distributed RAM

The three function generators within a CLB can be used as either a 16 X 2 dual-port RAM or a
32 X 1 single-port RAM. The XC4000 devices do not have block RAM, but a group of their CLBs
can form an array of memory. Spartan devices have block RAM in addition to distributed RAM.

interconnect Resources

A grid of switch matrices overlays the architecture of CLBs to provide general-purpose inter-
connect for branching and routing throughout the device. The interconnect has three types of
general-purpose interconnects: single-length lines, double-length lines, and long lines. A grid
of horizontal and vertical single-length lines connects an array of switch boxes that provide a
reduced number of connections between signal paths within each box, not a full crossbar switch.
Each CLB has a pair of three-state buffers that can drive signals onto the nearest horizontal lines
above or below the CLB.

Direct (dedicated) interconnect lines provide routing between adjacent vertical and hori-
zontal CLBs in the same column or row. These are relatively high speed local connections
through metal, but are not as fast as a hardwired metal connection because of the delay in-
curred by routing the signal paths through the transmission gates that configure the path. Di-
rect interconnect lines do not use the switch matrices, thus eliminating the delay incurred on
paths going through a matrix.’

! See Xilinx documentation for the pin-out conventions to establish local interconnects between CLBs,

318

Chapter 7 Memory and Programmable Logic

Note: Muxes without a select line
are configured by the program memory.

(Clock)

FIGURE 7.22
CLB architecture

Section 7.8 Sequential Programmable Devices 319

Ir
L

Interconnect path = [.
FIGURE 7.23

RAM cell controlling a PIP transmission gate

Double-length lines traverse the distance of two CLBs before entering a switch matrix, skip-
ping every other CLB. These lines provide a more efficient implementation of intermediate-length
connections by eliminating a switch matrix from the path, thereby reducing the delay of the path.

Long lines span the entire array vertically and horizontally. They drive low-skew, high-fan-
out control signals. Long vertical lines have a programmable splitter that segments the lines and
allows two independent routing channels spanning one-half of the array, but located in the
same column. The routing resources are exploited automatically by the routing software. There
are eight low-skew global buffers for clock distribution.

The signals that drive long lines are buffered. Long lines can be driven by adjacent CLBs
or IOBs and may connect to three-state buffers that are available to CLBs. Long lines provide
three-state buses within the architecture and implement wired-AND logic. Each horizontal
long line is driven by a three-state buffer and can be programmed to connect to a pull-up re-
sistor, which pulls the line to a logical 1 if no driver is asserted on the line.

The programmable interconnect resources of the device connect CLBs and IOBs, either di-
rectly or through switch boxes. These resources consist of a grid of two layers of metal seg-
ments and programmable interconnect points (PIPs) within switch boxes. A PIP is a CMOS
transmission gate whose state (on or off) is determined by the content of a static RAM cell in
the programmable memory, as shown in Fig. 7.23. The connection is established when the
transmission gate is on (i.e., when a | is applied at the gate of the n-channel transistor), and a
0 is applied at the gate of the p-channel transistor. Thus, the device can be reprogrammed sim-
ply by changing the contents of the controlling memory cell.

The architecture of a PIP-based interconnection in a switch box is shown in Fig. 7.24,
which shows possible signal paths through a PIP. The configuration of CMOS transmission
gates determines the connection between a horizontal line and the opposite horizontal line
and between the vertical lines at the connection. Each switch matrix PIP reguires six pass
transistors to establish full connectivity.

320 Chapter 7 Memory and Programmable Logic

FIGURE 7.24
Circuit for a programmable PIP

1/0 Block (I0B)

Each programmable 1/0 pin has a programmable IOB having buffers for compatibility with TTL
and CMOS signal levels. Figure 7.25 shows a simplified schematic for a programmable IOB.
It can be used as an input, an output, or a bidirectional port. An IOB that is configured as an
input can have direct, latched, or registered input. In an output configuration, the IOB has di-
rect or registered output. The output buffer of an [OB has skew and slew contral. The regis-
ters available to the input and output path of an IOB are driven by separate, invertible clocks.
There is a global set/reset.

Internal delay elements compensate for the delay induced when a clock signal passes through
a global buffer before reaching an IOB. This strategy eliminates the hold condition on the data
at an external pin. The three-state output of an I0B puts the output buffer in a high-impedance
state. The output and the enable for the output can be inverted. The slew rate of the output
buffer can be controlled to minimize transients on the power bus when noncritical signals are
switched. The IOB pin can be programmed for pull-up or pull-down to prevent needless power
consumption and noise.

The devices have embedded logic to support the IEEE 1149.1 (JTAG) boundary scan stan-
dard. There is an on-chip test access port (TAP) controller, and the I/O cells can be configured
as a shift register. Under testing, the device can be checked to verify that all the pins on a PC
board are connected and operate properly by creating a serial chain of all of the I/O pins of the
chips on the board. A master three-state control signal puts all of the IOBs in high-impedance
mode for board testing.

Enhancements

Spartan chips can accommodate embedded soft cores, and their on-chip distributed. dual-port.
synchronous RAM (SelectRAM) can be used to implement first-in, first-out register files

Section 7.8 Sequential Programmable Devices 321

RS [s T -
- control -| e
’\l L
al s P
| IE @
_i

Input R
clock D ;

FIGURE 7.25

XC4000 series 10B

Aln=1:0]

i

WE

DO or DI

WCLK

FIGURE 7.26
Distributed RAM cell formed from a lookup table

(FIFOs), shift registers, and scratchpad memories. The blocks can be cascaded to any width and
depth and located anywhere in the part, but their use reduces the CLBs available for logic.
Figure 7.26 displays the structure of the on-chip RAM that is formed by programming a lookup

322 Chapter 7 Memory and Programmable Logic

table to implement a single-port RAM with synchronous write and asynchronous read. Each
CLB can be programmed as a 16 X 2 or 32 X 1 memory.

Dual-port RAMs are emulated in a Spartan device by the structure shown in Fig. 7.27, which
has a single (common) write port and two asynchronous read ports. A CLB can form a mem-
ory having a maximum size of 16 X 1.

Xilinx Spartan XL FPGAs

Spartan XL chips are a further enhancement of Spartan chips, offering higher speed and density
(40,000 system gates, approximately 6,000 of which are usable) and on-chip, distributed SelectRAM
memory.” The lookup tables of the devices can implement 2" different functions of n inputs.

SPO
—

I(;.?o"
.

i

_:.;: iz
c e
erbeiii

i
?%

| DPRA[3:0)

3
re s .P(& deaéis

4

2,
'

SPO
—

FIGURE 7.27
Spartan dual-port RAM

4 The maximum number of logic gates for a Xilinx FPGA is an estimate of the maximum number of logic gates that
could be realized in a design consisting of only logic functions (no memory). Logic capacity is expressed in terms
of the number of two-input NAND gates that would be required to implement the same number and type of logic
functions (Xilinx App. Note).

Section 7.8 Sequential Programmable Devices 323

Table 7.7
Attributes of the Xilinx Spartan XL Device Family
~ Spartan XL | XCSO5/XL | XCS10/XL | XCS20/XL | XCS30/XL| XCS40/XL
System Gates! 2K-5K 3K-10K 7K-20K | 10K-30K | 13K-40K
LogioCells® | 238 466 950 1,368 1.862
‘Max Logic Gates | 3,000 5,000 10,000 13,000 20,000
CFlipFlops | 360 616 1,120 1.536 2,016
Max RAMBits | 3,200 6,272 12,800 18,432 25,088
Max Avail /0. 77 112 160 192 224

! 20-30% of CLBs as RAM.,
? 1 Logic cell = four-input lookup table + flip-flop.

The XL series is targeted for applications for which low cost, low power, low packaging,
and low test cost are important factors constraining the design. Spartan XL devices offer up to
80-MHz system performance, depending on the number of cascaded lookup tables, which re-
duce performance by introducing longer paths. Table 7.7 presents significant attributes of de-
vices in the Spartan XL family.

The architecture of the Spartan XL and earlier devices consists of an array of CLB tiles
mingled within an array of switch matrices, surrounded by a perimeter of I0Bs. These de-
vices support only distributed memory, whose use reduces the number of CLBs that could
be used for logic. The relatively small amount of on-chip memory limits the devices to ap-
plications in which operations with off-chip memory devices do not compromise perform-
ance objectives, Beginning with the Spartan Il series, Xilinx supported configurable
embedded block memory, as well as distributed memory in a new architecture.

Xilinx Spartan Il FPGAs

Aside from improvements in speed (200-MHz I/O switching frequency), density (up to 200,000
system gates) and operating voltage (2.5 V), four other features distinguish the Spartan II
devices from the Spartan devices: (1) on-chip block memory, (2) a novel architecture, (3) sup-
port for multiple I/O standards, and (4) delay locked loops.”

The Spartan I device family, manufactured in 0.22/0,18-pm CMOS technology with six
layers of metal for interconnect, incorporates configurable block memory in addition to the dis-
tributed memory of the previous generations of devices, and the block memory does not reduce
the amount of logic or distributed memory that is available for the application. A large on-chip
memory can improve system performance by eliminating or reducing the need to access off-chip
storage.

* Spartan 1 devices do not support low-voltage differential signaling (LVDS) or low-voltage positive emitter-coupled
logic (LVPECL) IO standards,

324

Chapter 7 Memory and Programmable Logic

Reliable clock distribution is the key to the synchronous operation of high-speed digital cir-
cuits. If the clock signal arrives at different times at different parts of a circuit, the device may
fail to operate correctly. Clock skew reduces the available time budget of a circuit by lengthen-
ing the setup time at registers. It can also shorten the effective hold-time margin of a flip-flop
in a shift register and cause the register to shift incorrectly. At high clock frequencies (shorter
clock periods), the effect of skew is more significant because it represents a larger fraction of
the clock cycle time. Buffered clock trees are commonly used to minimize clock skew in FPGAs.
Xilinx provides all-digital delay-locked loops (DLLs) for clock synchronization or manage-
ment in high-speed circuits. DLLs eliminate the clock distribution delay and provide frequency
multipliers, frequency dividers, and clock mirrors.

Spartan II devices are suitable for applications such as implementing the glue logic of a
video capture system and the glue logic of an ISDN modem. Device attributes are summarized
in Table 7.8, and the evolution of technology in the Spartan series is evident in the data in
Table 7.9.

Table 7.8
Spdrtan 11 Device Attnbum

S L, /m? sy
’ W{:{f urf.frf!riﬁ 7 .,‘W m

6K-15K | 13K-30K | 23K-50K | 37K-100K | 52K-150K | 71K-200K
432 972 1,728 2,700 3.888 5,292
16,384 24,576 32,768 40,960 49,152 57.344
86 132 176 196 260 284
! 20-30% of CLBs as RAM.

2 | Logic cell = four-input lookup table + fip-flop.

Table 7.9
Compurr!son of the Spartan Device Fammes

T
"ﬂ‘”ﬁg. .
XC4000 Virtex
Based Based
SK40K 15K-200K
Distributed Distributed Block +
RAM RAM Distributed
/ 80 MHz 100 MHz 200 MHz
o8 andards 4 4 16
/ 5V 33V 25V
No No Yes

Section 7.8 Sequential Programmable Devices 325

_ ' DEIDEIDEIDDDDDD E]E]DDUDDDDDDD_
AL000000 00 ij :
A U000 D0 CICH 3 CE
H _:DDE} UUUOULI B
AL | == DD :'? IO 2 LH
= E e e CLB». ::E-—I—:llpzzﬁ :
RN RN
ﬂ ERREEE BEREEEE NN
R e

Spartan Il architecture

The top-level tiled architecture of the Spartan II device, shown in Fig. 7.28, marks a new
organization structure of the Xilinx parts. Each of four quadrants of CLBs is supported by a
DLL and is flanked by a 4,096-bit block® of RAM, and the periphery of the chip is lined
with IOBs.

Each CLB contains four logic cells, organized as a pair of slices. Each logic cell, shown
in Fig. 7.29, has a four-input lookup table, logic for carry and control, and a D-type flip-flop.
The CLB contains additional logic for configuring functions of five or six inputs.

The Spartan II part family provides the flexibility and capacity of an on-chip block RAM;
in addition, each lookup table can be configured as a 16 X 1 RAM (distributed), and the pair
of lookup tables in a logic cell can be configured as a 16 X 2 bit RAM or a 32 X 1 bit
RAM.

The 10Bs of the Spartan II family are individually programmable to support the refer-
ence, output voltage, and termination voltages of a variety of high-speed memory and bus

® Parts are available with up to 14 blocks (56K hits).

326 Chapter 7 Memory and Programmable Logic

Logic Cell

G4 ——
G3
G2

Gl

F5IN

BY
SR

BX
CIN

CLK
CE

FIGURE 7.29
Spartan Il CLB slice

standards. (See Fig. 7.30.) Each IOB has three registers that can function as D-type flip-
flops or as level-sensitive latches. One register (TFF) can be used to register the signal
that (synchronously) controls the programmable output buffer. A second register (OFF)
can be programmed to register a signal from the internal logic. (Alternatively, a signal from
the internal logic can pass directly to the output buffer.) The third device can register the
signal coming from the I/O pad. (Alternatively, this signal can pass directly to the internal

Section 7.8 Sequential Programmable Devices 327

r - [
CLK |
ree OF
SR {:;;
0 Programmable
output buffer
OCE
10 {
1 e
Programmable
input buffer
ICE
To Other To Next
External 1/0
Vrer
Inputs of
Banks
FIGURE 7.30
Spartan Il I10B

logic.) A common clock drives each register, but each has an independent clock enable. A
programmable delay element on the input path can be used to eliminate the pad-to-pad
hold time.

Xilinx Virtex FPGAs

The Virtex device series’ is the leading edge of Xilinx technology. This family of devices ad-
dresses four key factors that influence the solution to complex system-level and system-on-chip
designs: (1) the level of integration, (2) the amount of embedded memory, (3) performance
(timing), and (4) subsystem interfaces. The family targets applications requiring a balance of
high-performance logic, serial connectivity, signal processing, and embedded processing (e.g.,
wireless communications). Process rules for leading-edge Virtex parts stand at 65 nm, with a

7 Virtex, Virtex-I1, II Platform, 1I-Pro/Pro X, and Virtex-S Multi-Platform FPGA.

328 Chapter 7 Memory and Programmable Logic

Wi

et i

s
(i

1

1-V operating voltage. The rules allow up to 330,000 logic cells and over 200,000 internal
flip-flops with clock enable, together with over 10 Mb of block RAM, and 550-MHz clock
technology packed into a single die.

The Virtex family incorporates physical (electrical) and protocol support for 20 different /0
standards, including LVDS and LVPECL, with individually programmable pins. Up to 12 dig-
ital clock managers provide support for frequency synthesis and phase shifting in synchronous
applications requiring multiple clock domains and high-frequency 1/O. The Vinex architec-
ture is shown in Fig. 7.31, and its IOB is shown in Fig. 7.32.

Problems 329

FIGURE 7.32
Virtex 10B block
PROBLEMS
Answers to problems marked with * appear at the end of the book.
7.1 The memory units that follow are specified by the number of words times the number of bits per
word. How many address lines and input—output data lines are needed in each case?
(a) 8K X 16
(b) 2G X 8
(c) 16M X 32
(d) 256K X 64
7.2* Give the number of bytes stored in the memories listed in Problem 7.1.
7.3* Word number 723 in the memory shown in Fig. 7.3 contains the binary equivalent of 3,451, List
the 10-bit address and the 16-bit memory content of the word,
7.4 Show the memory cycle timing waveforms for the write and read operations, Assume a CPU
clock of 100 MHz and a memory cycle time of 25 ns.
7.5 Write a test bench for the memory described in HDL Example 7.1, The test program stores

binary 5 in address 3 and binary 10 in address 43, Then the two addresses are read to verify
their stored contents.

330

Chapter 7

7.6

7™

7.8*

7.9
7.10*

711
12

7.13*

7.14

7.15

7.16*

Memory and Programmable Logic

Enclose the 4 X 4 RAM of Fig. 7.6 in a block diagram showing all inputs and outputs. Assum-
ing three-state outputs, construct an 8 X 8 memory using four 4 X 4 RAM units.

A 16K X 4 memory uses coincident decoding by splitting the internal decoder into X-selection

and Y-selection.

(a) What is the size of each decoder, and how many AND gates are required for decoding the
address?

(b) Determine the X and Y selection lines that are enabled when the input address is the binary
equivalent of 6,000.

(a) How many 32K X 8 RAM chips are needed to provide a memory capacity of 256K bytes?
(b) How many lines of the address must be used to access 256K bytes? How many of these lines
are connected to the address inputs of all chips?

(c) How many lines must be decoded for the chip select inputs? Specify the size of the decoder.

ADRAM chip uses two-dimensional address multiplexing. It has 13 common address pins, with the
row address having one bit more than the column address. What is the capacity of the memory?

Given the 8-bit data word 01011011, generate the 13-bit composite word for the Hamming code
that corrects single errors and detects double errors.

Obtain the 15-bit Hamming code word for the 11-bit data word 11001001010.

A 12-bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What
was the original 8-bit data word that was written into memory if the 12-bit word read out is as follows:
(a) 000011101010
(b) 101110000110
(c) 101111110100

How many parity check bits must be included with the data word to achieve single-error correc-
tion and double-error detection when the data word contains

(a) 16 bits.

(b) 32 bits.

(c) 48 bits.

It is necessary to formulate the Hamming code for four data bits, D5, Ds, D, and Dy, together with

three parity bits, Py, P;, and Py.

(a)* Evaluate the 7-bit composite code word for the data word 0010.

(b) Evaluate three check bits, Cy, C, and C}, assuming no error.

(c) Assume an error in bit Ds during writing into memory. Show how the error in the bit is
detected and corrected.

(d) Add parity bit P to include double-error detection in the code. Assume that errors occurred
in bits P, and Ds. Show how the double error is detected.

Givena 64 X 8 ROM chip with an enable input, show the external connections necessary to con-
struct a 256 X 8 ROM with four chips and a decoder.

A ROM chip of 4,096 X 8 bits has two chip select inputs and operates from a 5-volt power sup-
ply. How many pins are needed for the integrated circuit package? Draw a block diagram, and label
all input and output terminals in the ROM.

Problems 331

10°

10'

FIGURE P7.17

7.17 The 32 X 6 ROM, together with the 2° line, as shown in Fig. P7.17, converts a six-bit binary num-
ber to its corresponding two-digit BCD number. For example, binary 100001 converts to BCD
011 0011 (decimal 33). Specify the truth table for the ROM.

7.18* Specify the size of a ROM (number of words and number of bits per word) that will accommo-
date the truth table for the following combinational circuit components:
(a) a binary multiplier that multiplies two 4-bit binary words,
(b) a 4-bit adder—subtractor,
(c) aquadruple two-to-one-line multiplexer with common select and enable inputs, and

(d) a BCD-to-seven-segment decoder with an enable input.

7.19 Tabulate the PLA programming table for the four Boolean functions listed below. Minimize the
numbers of product terms.

Alx,y,z) = 2(1,2,4,6)
B(x,y,z) = 2(0,1,6,7)
Clx, 3 2) = 2(2.6)
D(x,y,z) = 2(1,2,3,5,7)

7.20 Tabulate the truth table for an 8 X 4 ROM that implements the Boolean functions
A(x,y,z) = 2(0,3,4,6)
B(x,y,z) = 2(0,1,3,7)
C{x,3.2) = 2(1,5)

D(x,y,z) = 2(0,1,4,5,7)
Considering now the ROM as a memory. Specify the memory contents at addresses 1 and 4.

332

Chapter 7

.21
7.22
7.23

7.24
7.25*

7.26

7.27

7.28

7.29

Memory and Programmable Logic

Derive the PLA programming table for the combinational circuit that squares a three-bit number.
Minimize the number of product terms. (See Fig. 7.12 for the equivalent ROM implementation.)

Derive the ROM programming table for the combinational circuit that squares a 4-bit number. Min-
imize the number of product terms.

List the PLA programming table for the BCD-to-excess-3-code converter whose Boolean func-
tions are simplified in Fig. 4.3.

Repeat Problem 7.23, using a PAL.

The following is a truth table of a three-input, four-output combinational circuit:

Inputs Outputs
x y 2 A B C D
0o 0 0 0 1 0o o0
o 0 1 1 1 1 I
o 1 0 1 0 1 1
0 1 1 0 1 0 I
10 0 1 0 1 a
10 1 0 6 0 1
1 10 1 1 1 0
1 1 1 0 1 1 I

Tabulate the PAL programming table for the circuit, and mark the fuse map in a PAL diagram
similar to the one shown in Fig. 7.17.

Using the registered macrocell of Fig, 7.19, show the fuse map for a sequential circuit with two
inputs x and y and one flip-flop A described by the input equation
Dy=xBy®A

Modify the PAL diagram of Fig. 7.16 by including three clocked D-type flip-flops between the
OR gates and the outputs, as in Fig. 7.19. The diagram should conform with the block diagram
of a sequential circuit. The modification will require three additional buffer—inverter gates and six
vertical lines for the flip-flop outputs to be connected to the AND array through programmable
connections, Using the modified registered PAL diagram, show the fuse map that will implement
a three-bit binary counter with an output carry.
Draw a PLA circuit to implement the functions

Fy=AB+ AC' + A'BC

F>, = (AC + AB + BC)
Develop the programming table for the PLA described in Problem 7.26,

REFERENCES

References 333

1.

@ w

N

>

©

10.

Hamming, R. W. 1950, Error Detecting and Error Correcting Codes. Bell Syst. Tech. J. 29:
147-160.

Kitson, B. 1984. Programmable Array Logic Handbook. Sunnyvale, CA: Advanced Micro
Devices.

Liv, S., and D. J. CosTELLO, JR. 1983, Error Control Coding. Englewood Cliffs, NJ: Prentice-Hall.
Memory Components Handbook. 1986. Santa Clara, CA: Intel.

NELsON, V. P, H. T. NacGLE, J. D. Irwix, and B. D. CarroLL. 1995, Digiral Logic Circuit Analy-
sis and Design. Upper Saddle River, NI: Prentice Hall.

Programmable Logic Data Book. 1988, Dallas: Texas Instruments,

The Programmable Logic Data Book, 2d ed. 1994, San Jose, CA: Xilinx, Inc.

Toccr, R. 1., and N. S, WinMmER., 2004, Digiral Systems Principles and Applications, 9th ed. Upper
Saddle River, NJ: Prentice Hall,

TRIMBERGER, S. M. 1994. Field Programmable Gate Array Technology. Boston: Kluwer Academic
Publishers.

WaKEeRrLY, J. F. 2006. Digital Design: Principles and Practices, 4th ed. Upper Saddle River, NJ:
Prentice Hall.

